Lecture 12 — Garbage Collection

COSE212: Programming Languages

Jihyeok Park

NPLRG

2023 Fall

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023

Recall ’VNPLRG

® Mutation makes it possible to update the contents of a data
structure or a variable after its creation.
® BFAE — FAE with mutable boxes
® MFAE - FAE with mutable variables
® Evaluation with memories, finite maps from addresses to values:

Memories M € A fin, \Y
Addresses a € A

® |n this lecture, we will learn memory management techniques to
deallocate unreachable memory cells:
® Stack and Heap
® Manual Memory Management
® Garbage Collection (GC)

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 2/62

Contents ’VNPLRG

1. Stack and Heap
Tail-Call Optimization (TCO)

2. Manual Memory Management

3. Garbage Collection
Reference Counting
Mark-and-Sweep GC
Copying GC (Two-Space GC)
Other GC Algorithms

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 3/62

Contents ’VNPLRG

1. Stack and Heap
Tail-Call Optimization (TCO)

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 4/62

Stack and Heap ’VPLRG

In the previous lecture, we have seen the memory in the following MFAE
expression has unreachable memory cells as follows:

/* MFAE */ o=

var y = 1; y — ao

var £ = x => { fi—ap

X =x+7y;]

X * X

¥ A . dp d1 a2 a3 ...
£(5); /* 36 */

v = 3 M =[3][v]6]8]..]
£(8); /% 64 x/ *

where v = (Ax.x = x + y; x * x, [y — ao])

Then, how to detect and deallocate unreachable memory cells?

Let's delete unreachable memory cells when the program exits functions!

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023

Stack and Heap ’VPLRG

We can divide the memory into two parts:
e Stack — for local variables and function parameters

e Heap — for dynamically allocated memory cells

A M A M

0x00 0x00 Data

0x01 0x01 Data Stack
0x02 0x02 Data

0x03 l 0x03

OxFC OxFC

OxFD 0xFD Data

OxFE OxFE Data Heap
OxFF OxFF Data

Create a new stack frame when the program enters a function, and
delete the stack frame when it exits the function.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023

Stack and Heap

For example, consider the following Scala program:

case class Box(var

def f(x: Int): Int
var y = Box(1)
var z = g(2)
X +y.k+2z

def g(b: Int): Int
var ¢ = Box(b)
c.k +3

var a = 1

var d = f(42)

a+d

k:

Int)

COSE212 @ Korea University

Lecture 12 — Garbage Collection

A
0x00
0x01
0x02
0x03
0x04

OxFE
OxFF

’VNPLRG

October 16, 2023

7/62

Stack and Heap ’VPLRG

For example, consider the following Scala program:

case class Box(var k: Int) A M
0x00 1 a
def f(x: Int): Int = 0x01
var y = Box(1) 0x02
var z = g(2) 0x03
x+yk+z 0x04
def g(b: Int): Int =
var ¢ = Box(b)
c.k +3 OXFE
OxFF
var a = 1 /* a -> 0x00 */ | *
var d = f(42)
a+d

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023

Stack and Heap ’VPLRG

For example, consider the following Scala program:

case class Box(var k: Int) A M
0x00 1
def f(x: Int): Int = /* x -> 0x01 */ 0x01 a2
var y = Box(1) /* y -> 0x02 */ | * 0x02 OxFF == f
var z = g(2) 0x03
rryktz 0x04
def g(b: Int): Int =
var ¢ = Box(b)
c.k +3 OXFE
OxFF 1
var a = 1 /* a -> 0x00 */
var d = f(42)
a+d

A new stack frame is created when it enters the function f.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023

Stack and Heap ’VPLRG

For example, consider the following Scala program:

case class Box(var k: Int) A M
0x00 1 a
def f(x: Int): Int = /% x —-> 0x01 */ 0x01 42 X
var y = Box(1) /* y => 0x02 */ 0x02 OxFF vy f
var z = g(2) 0x03 2 b
x*yk+z 0x04 OxXFE i

def g(b: Int): Int = /* b -> 0x03 */

var ¢ = Box(b) /* ¢ => 0x04 */
c.k+3 /* 5 %/ * OXFE 2
OxFF 1
var a = 1 /* a -> 0x00 */
var d = f(42)
a+d

A new stack frame is created when it enters the function g.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 10/ 62

Stack and Heap ’VPLRG

For example, consider the following Scala program:

case class Box(var k: Int) A M
0x00 1 a
def f(x: Int): Int = /* x -> 0x01 */ 0x01 = X
var y = Box(1) /*y => 0x02 */ 0x02 OXFF v £
var z = g(2) /* z => 0x03 %/ 0x03 . T
x+y.k+z /* 48 */ * 0x04
def g(b: Int): Int =
var ¢ = Box(b)
c.k+3 OXFE 2
OXFF 1
var a = 1 /* a -> 0x00 */
var d = f(42)
a+d

After exiting the function g, its stack frame is deleted. The memory cells
allocated for b and c in the stack frame are deallocated.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 11/62

Stack and Heap

For example, consider the following Scala program:

var
var

def f(x:

y
z

X +y.

case class Box(var

Int): Int
= Box (1)
= g(2)
k + z

def g(b: Int): Int
var ¢ = Box(b)

c.k +3
var a = 1
var d = f(42)
a+d

k:

Int)

/* a -> 0x00 *x/
/% d -> 0x01 %/
/* 49 x/ *

A
0x00
0x01
0x02
0x03
0x04

OxFE
OxFF

7VNPLRG

48

After exiting the function £, its stack frame is deleted. The memory cells
allocated for x, y, and z in the stack frame are deallocated.

COSE212 @ Korea University

Lecture 12 — Garbage Collection

October 16, 2023

12/62

Tail-Call Optimization (TCO)

Here is another example with a recursive function:

def sum(x: Int, acc: Int): Int =
if (x < 1) acc
else sum(x - 1, x + acc) // tail-call

sum (1000, 0)

COSE212 @ Korea University Lecture 12 — Garbage Collection

A
0x00
0x01
0x02
0x03
0x04
0x05

OxFE
OXFF

’VNPLRG

M
1000 X
---|sum
0 acc
October 16, 2023 13 /62

Tail-Call Optimization (TCO)

Here is another example with a recursive function:

def sum(x: Int, acc: Int): Int =
if (x < 1) acc
else sum(x - 1, x + acc) // tail-call

sum (1000, 0)

COSE212 @ Korea University Lecture 12 — Garbage Collection

A
0x00
0x01
0x02
0x03
0x04
0x05

OxFE
OxFF

’VNPLRG

M
1000 X
-=--|sum
0 acc
999 X
-==|sum
1000 acc

October 16, 2023

14 /62

Tail-Call Optimization (TCO) VPLRG

Here is another example with a recursive function:

A M
0x00 1000 X
---|sum
0x01 0 acc
def sum(x: Int, acc: Int): Int = 0x02 999 X
i ---|sum
li (x < t) aci S /) teileant 0x03 1000 acc
- + -
else sum(x , X + acc tail-ca ox04 p—s "
0x05 1999 ace| ™"
sum (1000, 0) *
OxFE 873 X
---sum
OxFF 118999 acc

It fails with a stack overflow error.
However, is it really necessary to keep all the stack frames? No!

Scala supports tail-call optimization (TCO).

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 15 /62

Tail-Call Optimization (TCO) VPLRG
Here is another example with a recursive function:

A M

0x00 1000 X
===|sum
0x01 0 acc

def sum(x: Int, acc: Int): Int = 0x02
if (x < 1) acc
else sum(x - 1, x + acc) // tail-call

0x03
0x04
0x05

sum (1000, 0)

OxFE
OxFF

Why? the function call is in tail-call position (i.e., the final action in the
function). It means that it directly returns the result without any further
computation.

Thus, we can safely discard the current stack frame before calling the
function, and it is called tail-call optimization (TCO).

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 16 / 62

Tail-Call Optimization (TCO) VPLRG
Here is another example with a recursive function:

A M

0x00 999 X
===sum
0x01 1000 acc

def sum(x: Int, acc: Int): Int = 0x02
if (x < 1) acc
else sum(x - 1, x + acc) // tail-call

0x03
0x04
0x05

sum (1000, 0)

OxFE
OxFF

Why? the function call is in tail-call position (i.e., the final action in the
function). It means that it directly returns the result without any further
computation.

Thus, we can safely discard the current stack frame before calling the
function, and it is called tail-call optimization (TCO).

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 17 /62

Tail-Call Optimization (TCO)

Here is another example with a recursive function:

if (x < 1) acc

sum (1000, 0) // 500500

def sum(x: Int, acc: Int): Int =

else sum(x - 1, x + acc) // tail-call

A
0x00
0x01
0x02
0x03
0x04
0x05

OxFE
OxFF

M

7VNPLRG

0

500500

acc

sum

Why? the function call is in tail-call position (i.e., the final action in the
function). It means that it directly returns the result without any further

computation.

Thus, we can safely discard the current stack frame before calling the

function, and it is called tail-call optimization (TCO).

COSE212 @ Korea University

Lecture 12 — Garbage Collection

October 16, 2023

18/ 62

Contents ’VNPLRG

2. Manual Memory Management

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 19 /62

Manual Memory Management ’VPLRG

Let's see the previous example again:

A M
case class Box(var k: Int)
0x00 1
def f(x: Int): Int = 0x01 48
var y = Box(1) 0x02
var z = g(2) 0x03
x+y.k+z 0x04
def g(b: Int): Int =
var ¢ = Box(b)
c.k +3 OxFE 2
Heap
OxFF 1
var a = 1 /* a -> 0x00 *x/
var b = £(42) /* b —=> 0x01 */
a+b /x 49 x/ *

Unfortunately, we still cannot deallocate memory cells (e.g., 0xFE and
0xFF) dynamically allocated in the heap rather than the stack.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 20/62

Manual Memory Management

7VNPLRG

One way to resolve this is using the manual memory management, and

C++ is an example language that supports it with special keywords for

memory allocation (new) and deallocation (delete) in heap, respectively:

struct Box { int k; Box(int k): k(k) {} };
int f(int x) {
Box* y = new Box(1); // alloc OxFF
int z = g(2);
int k = y->k;
return x + k + z;

}

int g(int b) {
Box* ¢ = new Box(b); // alloc OxFE
int k = c->k;
return k + 3;

}

int a = 1; /* a —=> 0x00 */

int b = £(42); /* b -> 0x01 */

a+b; /* 49 */ *

COSE212 @ Korea University

Lecture 12 — Garbage Collection

A

0x00
0x01
0x02
0x03
0x04

OxFE
OxFF

M

1

48

October 16, 2023

Heap

21/62

Manual Memory Management

’VNPLRG

One way to resolve this is using the manual memory management, and

C++ is an example language that supports it with special keywords for

memory allocation (new) and deallocation (delete) in heap, respectively:

struct Box { int k; Box(int k): k(k) {} };
int f(int x) {
Box* y = new Box(1); // alloc OxFF
int z = g(2);
int k = y->k; delete y; // dealloc OxFF
return x + k + z;

}

int g(int b) {
Box* ¢ = new Box(b); // alloc OxFE
int k = c->k; delete c; // dealloc OxFE
return k + 3;

}

int a = 1; /* a —=> 0x00 */

int b = £(42); /* b -> 0x01 */

a+b; /* 49 */ *

COSE212 @ Korea University Lecture 12 — Garbage Collection

A
0x00
0x01
0x02
0x03
0x04

OxFE
OxFF

M

1

48

October 16, 2023

22/62

Manual Memory Management ’VPLRG

Pros:
¢ Efficient — Users can explicitly deallocate memory cells allocated in
heap whenever they want.
Cons:
® Error-prone — Users have all the responsibility to deallocate memory

cells allocated in heap:
® Memory leak occurs if users forget to deallocate memory cells.

b = new Box(42);

® Dangling pointer occurs if users deallocate memory cells too early.

b = new Box(42); ... delete b; ... b->k;

Double free occurs if users deallocate memory cells more than once.

b = new Box(42); ... delete b; ... delete b;

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 23 /62

Contents ’VNPLRG

3. Garbage Collection
Reference Counting
Mark-and-Sweep GC
Copying GC (Two-Space GC)
Other GC Algorithms

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 24 /62

Garbage Collection 7NPLRG

Is there any way to automatically deallocate memory cells in heap? Yes!

Garbage collection (GC) is a representative technique for automatic
memory management.

Let's learn several GC algorithms:
® Reference counting
* Mark-and-sweep GC
Copying GC (Two-space GC)
Others

Before explaining them, let's represent memory cells in heap in a graphical
way without actual addresses.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 25 /62

Garbage Collection

’VNPLRG

From now on, we will use the graphical representation of memory cells:

var

var

case class A(var x: A)

a = A(A(A(null)))

o’
]

A(A(null))

A(null)

null

Stack

h

*

AN

\

Heap

COSE212 @ Korea University

Lecture 12 — Garbage Collection

October 16, 2023 26 /62

Garbage Collection 7NPLRG

From now on, we will use the graphical representation of memory cells:

Stack
case class A(var x: A)
var a = A(A(A(null)))
var b = A(A(null)) *

A(null)

o
»
I

Heap
b = null

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 27 /62

Garbage Collection 7NPLRG

From now on, we will use the graphical representation of memory cells:
Stack

LN
AN

case class A(var x: A)

var a

A(A(A(null)))

var b = A(A(null))

A(null)

o
»
I

Heap
b = null

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 28 /62

Garbage Collection 7NPLRG

From now on, we will use the graphical representation of memory cells:

Stack
case class A(var x: A)

LA
var a = A(A(A(null))) AN
var b = A(A(null))

?
./

*
b.x = a *
a.x = A(null) E:Z
a = a.x Heap
b = null

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 29 /62

Garbage Collection 7NPLRG

From now on, we will use the graphical representation of memory cells:

Stack
case class A(var x: A)
LA
var a = A(A(A(null))) A\
var b = A(A(null)) \
A -
a.x.x.x = a.x 1 H

A(null) * E:E

Heap

o
»
I

b = null

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 30/62

Garbage Collection 7NPLRG

From now on, we will use the graphical representation of memory cells:
Stack

case class A(var x: A)

var a

A(A(A(null)))

var b = A(A(null))

A(null)

o
»
I

Heap
b = null

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 31/62

Garbage Collection 7NPLRG

From now on, we will use the graphical representation of memory cells:

Stack
case class A(var x: A)
var a = A(A(A(null)))
var b = A(A(null))

A(null)

o
»
I

Heap
b = null *

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 32/62

Garbage Collection 7NPLRG

From now on, we will use the graphical representation of memory cells:

Stack
case class A(var x: A)

b
var a = ACA(A(null))) |
var b =

A(A(null)) (;I

=l
a.Xx.Xx.x = a.x
b.x = a

A(null) E:E

a = a.x

[
o]
]

Heap
b = null *

We need to deallocate five unreachable memory cells in heap.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 33/62

Reference Counting 7NPLRG

Reference counting is a simple GC algorithm that keeps track of the
number of references to each memory cell in heap.

@ Initialize the reference count of each cell to 0.

® When a reference to a cell is created, increment its reference count.

©® When a reference to a cell is deleted, decrement its reference count.

® When the reference count of a cell reaches 0, deallocate the cell.
Many programming languages use reference counting to implement GC:

e Python, Swift, Perl, Objective-C, etc.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 34 /62

Reference Counting

7VNPLRG

Reference counting is a simple GC algorithm that keeps track of the
number of references to each memory cell in heap.

case class A(var x: A)

var a = A(A(A(null)))

o
]

var A(A(null))

b.x = a

A(null)

[
»
I

Stack

*

COSE212 @ Korea University

Lecture 12 — Garbage Collection

Heap

October 16, 2023

Reference Counting 7NPLRG

Reference counting is a simple GC algorithm that keeps track of the
number of references to each memory cell in heap.

Stack
case class A(var x: A)

N
var a = A(A(A(null))) A\
var b = A(A(null)) *

b.x = a

A(null)

[
»
I

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 36 /62

Reference Counting

Reference counting is a simple GC algorithm that keeps track of the

7VNPLRG

number of references to each memory cell in heap.

var

var

case class A(var x: A)

A(A(A(null)))

[\
]

o
]

A(A(null))

= a

A(null)

null

Stack

LN
AN

COSE212 @ Korea University

Lecture 12 — Garbage Collection

Heap

October 16, 2023

37/62

Reference Counting

Reference counting is a simple GC algorithm that keeps track of the

number of references to each memory cell in heap.

var

var

case class A(var x: A)

a = A(A(A(null)))
b = A(A(null))
X.X = a.x

= a

A(null)

null

Stack

N
AN

7VNPLRG

COSE212 @ Korea University

Lecture 12 — Garbage Collection

October 16, 2023

38/62

Reference Counting

Reference counting is a simple GC algorithm that keeps track of the

number of references to each memory cell in heap.

var

var

case class A(var x: A)

a = A(A(A(null)))
b = A(A(null))
X.X = a.x

= a

A(null)

null

Stack

7VNPLRG

e
AN

(ﬂ

COSE212 @ Korea University

Lecture 12 — Garbage Collection

Heap

October 16, 2023

39/ 62

Reference Counting

7VNPLRG

Reference counting is a simple GC algorithm that keeps track of the
number of references to each memory cell in heap.

var

var

case class A(var x: A)

A(A(A(null)))

[\
]

o
]

A(A(null))

= a

A(null)

Stack

?l'\

COSE212 @ Korea University

Lecture 12 — Garbage Collection

October 16, 2023

Reference Counting 7NPLRG

Reference counting is a simple GC algorithm that keeps track of the
number of references to each memory cell in heap.

Stack
case class A(var x: A)

2
var a = A(A(A(null))) |
var b = A(A(null))

*
a.Xx.X.X = a.x
b.x = a
a.x = A(null)
a=a.x

Heap
b = null *

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 41/62

Reference Counting 7NPLRG

Reference counting is a simple GC algorithm that keeps track of the
number of references to each memory cell in heap.
Stack

case class A(var x: A)

var a = A(A(A(null)))

var b = A(A(null))

ref. cycles
b.x = a
a.x = A(null) w
a = a.x Heap
b = null *

Unfortunately, we cannot deallocate unreachable reference cycles.
COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 42 /62

Reference Counting 7NPLRG

Reference counting is a simple GC algorithm that keeps track of the
number of references to each memory cell in heap.

Pros:
e Easy to implement — Simply increment and decrement the reference
count when a reference is created and deleted.
® Low overhead — Deallocation is immediate and takes a short time.
Cons:
® Reference cycles — It cannot deallocate unreachable reference cycles.
® Reference count cost — It requires space to store reference counts.

® Free List and Fragmentation — It requires a free list to keep track
of available free memory cells in heap, and it also suffers from
fragmentation making it difficult to allocate large objects.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 43 /62

Mark-and-Sweep GC ’VPLRG

Mark-and-Sweep GC is one of tracing GC algorithms that traverses
the heap to find unreachable objects when it is triggered under some
conditions.

@ Mark all memory cells as unreachable (white).

® Mark all memory cells referenced by roots as unscanned (gray).

© Repeat until there are no unscanned (gray) memory cells:

@ Pick an unscanned (gray) memory cell.
® Mark memory cells referenced by the picked one as unscanned (gray).
© Mark the picked memory cell as scanned (black).

O Deallocate (sweep) all memory cells that are still marked as
unreachable (white).

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 44 /62

Mark-and-Sweep GC

7VNPLRG

Assume that the GC is triggered at the following program point, and let's
perform mark-and-sweep GC.

case class A(var x: A)

var a = A(A(A(null)))

var b = A(A(null))

b.x = a

A(null)

[
»
]

b = null

Stack

1|\

COSE212 @ Korea University

Lecture 12 — Garbage Collection

Heap

October 16, 2023

45 /62

Mark-and-Sweep GC

7VNPLRG

Assume that the GC is triggered at the following program point, and let's
perform mark-and-sweep GC.

case class A(var x: A)

var a = A(A(A(null)))

var b = A(A(null))

b.x = a

A(null)

[
»
]

Stack

COSE212 @ Korea University

Lecture 12 — Garbage Collection

Heap

October 16, 2023

46 / 62

Mark-and-Sweep GC ’VPLRG

Assume that the GC is triggered at the following program point, and let's
perform mark-and-sweep GC.

Stack
case class A(var x: A) E
var a = A(A(A(null))) AN
var b = A(A(null))

*
a.x.Xx.X = a.x ' ..
*

b.x = a
a.x = A(null) * IE:E
a=a.x Heap
b = null

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 47 /62

Mark-and-Sweep GC ’VPLRG

Assume that the GC is triggered at the following program point, and let's
perform mark-and-sweep GC.

Stack
case class A(var x: A)
var a = A(A(A(null)))
var b = A(A(null))

b.x = a

A(null) *

[
»
]

Heap

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 48 /62

Mark-and-Sweep GC ’VPLRG

Assume that the GC is triggered at the following program point, and let's
perform mark-and-sweep GC.

Stack
case class A(var x: A)
) e
var a = A(A(A(null))) I
var b = A(A(null))
*
a.X.X.X = a.x .
*
b.x = a
a.x = A(null) * M
a=a.x Heap
b = null

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 49 /62

Mark-and-Sweep GC ’VPLRG

Assume that the GC is triggered at the following program point, and let's
perform mark-and-sweep GC.

Stack

case class A(var x: A)

var a = A(A(A(null)))

var b = A(A(null))

b.x = a

A(null) *

[
»
]

Heap

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023

Mark-and-Sweep GC ’VPLRG

Mark-and-Sweep GC is one of tracing GC algorithms that traverses

the heap to find unreachable objects when it is triggered under some
conditions.

Pros:

¢ Reference cycles — It can deallocate unreachable reference cycles.
Cons:

e Stop-the-world — It stops the program execution during GC.

¢ Free List and Fragmentation — It requires a free list to keep track
of available free memory cells in heap, and it also suffers from
fragmentation making it difficult to allocate large objects.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 51/62

Copying GC (Two-Space GC) ’VPLRG

Similar to mark-and-sweep GC, copying GC (Two-space GC) is another
tracing GC algorithm. However, it copies all the reachable objects and
reorganizes them in a compact layout by splitting the heap into two
spaces: from-space and to-space.

e Allocation — It allocates memory cells only in from-space.

¢ Deallocation — It deallocates all the unreachable objects as follows:
@ Mark all memory cells as unreachable (white).

® Copy all memory cells referenced by roots as unscanned (gray) and
copy them from the from-space to the to-space

© Update the data of the original memory cell to point to the copied one.

O Repeat until there are no unscanned (gray) memory cells
@ Pick an unscanned (gray) memory cell in the from-space.
@® Copy memory cells referenced by the picked one as unscanned (gray).
© Update the data of the original memory cell to point to the copied one.
@ Mark the picked memory cell as scanned (black).

® Swap from-space and to-space.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 52 /62

Copying GC (Two-Space GC) VPLRG
Similar to mark-and-sweep GC, copying GC (Two-space GC) is another
tracing GC algorithm. However, it copies all the reachable objects and
reorganizes them in a compact layout by splitting the heap into two
spaces: from-space and to-space.

Stack

From-space

To-space

Heap

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 53 /62

Copying GC (Two-Space GC) VPLRG
Similar to mark-and-sweep GC, copying GC (Two-space GC) is another
tracing GC algorithm. However, it copies all the reachable objects and

reorganizes them in a compact layout by splitting the heap into two
spaces: from-space and to-space.

From-space

To-space

Heap

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 54 /62

Copying GC (Two-Space GC) VPLRG
Similar to mark-and-sweep GC, copying GC (Two-space GC) is another
tracing GC algorithm. However, it copies all the reachable objects and

reorganizes them in a compact layout by splitting the heap into two
spaces: from-space and to-space.

From-space

To-space

Heap

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 55 /62

Copying GC (Two-Space GC) VPLRG
Similar to mark-and-sweep GC, copying GC (Two-space GC) is another
tracing GC algorithm. However, it copies all the reachable objects and

reorganizes them in a compact layout by splitting the heap into two
spaces: from-space and to-space.

From-space To-space

Heap

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 56 /62

Copying GC (Two-Space GC) VPLRG
Similar to mark-and-sweep GC, copying GC (Two-space GC) is another
tracing GC algorithm. However, it copies all the reachable objects and

reorganizes them in a compact layout by splitting the heap into two
spaces: from-space and to-space.

From-space

To-space

Heap

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 57 /62

Copying GC (Two-Space GC) ’VPLRG

Similar to mark-and-sweep GC, copying GC (Two-space GC) is another
tracing GC algorithm. However, it copies all the reachable objects and

reorganizes them in a compact layout by splitting the heap into two
spaces: from-space and to-space.

Stack

[a=d
T [Pl

To-space

From-space

Heap

COSE212 @ Korea University

Lecture 12 — Garbage Collection

October 16, 2023 58 /62

Copying GC (Two-Space GC) ’VPLRG

Similar to mark-and-sweep GC, copying GC (Two-space GC) is another
tracing GC algorithm. However, it copies all the reachable objects and
reorganizes them in a compact layout by splitting the heap into two
spaces: from-space and to-space.

Pros:

e Reference cycles — It can deallocate unreachable reference cycles.

e No more Free List and Fragmentation — After deallocation process,
the heap is always contiguous. Thus, it is enough to keep track of
the first free memory cell for allocation.

e Fast Allocation — It does not require any extra work to find free
memory cells in the free list for allocation.

Cons:

e Stop-the-world — It stops the program execution during GC.
¢ Only half of the heap (from-space) is used for allocation.

® Expensive copying process — It copies all the reachable objects from
the from-space to the to-space.

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 59 /62

Other GC Algorithms ’VPLRG

Existing real-world programming languages utilize more sophisticated GC
algorithms, mix diverse GC algorithms, or even provide options to choose
different GC algorithms:

* Generational GC - e.g, Java!, Python?

* Concurrent GC - e.g., Java3, Golang*

Ownership, Borrowing, and Lifetimes — e.g., Rust®

Escape Analysis — e.g., Java®

® etc.

https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://devguide.python.org/internals/garbage-collector/
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms . html
https://tip.golang.org/doc/gc-guide
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

o O h W N R

https://blogs.oracle.com/javamagazine/post/escape-analysis-in-the-hotspot-jit-compiler

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023

https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://devguide.python.org/internals/garbage-collector/
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html
https://tip.golang.org/doc/gc-guide
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://blogs.oracle.com/javamagazine/post/escape-analysis-in-the-hotspot-jit-compiler

Summary ’VPLRG

1. Stack and Heap
Tail-Call Optimization (TCO)

2. Manual Memory Management

3. Garbage Collection
Reference Counting
Mark-and-Sweep GC
Copying GC (Two-Space GC)
Other GC Algorithms

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 61 /62

Next Lecture ’VNPLRG

® | azy Evaluation

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 12 — Garbage Collection October 16, 2023 62 /62

https://plrg.korea.ac.kr

	Stack and Heap
	Tail-Call Optimization (TCO)

	Manual Memory Management
	Garbage Collection
	Reference Counting
	Mark-and-Sweep GC
	Copying GC (Two-Space GC)
	Other GC Algorithms

