Lecture 13 — Lazy Evaluation

COSE212: Programming Languages

Jihyeok Park

NPLRG

2023 Fall

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023

Recall ’VNPLRG

® \We learned two different evaluation strategies, call-by-value and
call-by-reference, in the previous lecture.
® Call-by-value (CBV) eagerly evaluates the arguments and passes the
evaluated values to the function.
® Call-by-reference (CBR) passes the references (i.e., addresses) of the
arguments to the function.

® In this lecture, we will learn another evaluation strategy called lazy
evaluation, while the previous two are called eager evaluation.

¢ Call-by-name (CBN)
® Call-by-need (CBN')

e LFAE — FAE with Lazy Evaluation
® |Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 2/27

Contents ’VNPLRG

1. Lazy Evaluation

2. LFAE — FAE with Lazy Evaluation
Interpreter and Natural Semantics
Function Application
Addition and Multiplication
Identifier Lookup

3. Call-by-Name (CBN) vs. Call-by-Need (CBN")
Interpreter for Call-by-Need (CBN')

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 3/27

Contents ’VNPLRG

1. Lazy Evaluation

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 4/27

Lazy Evaluation 7NPLRG

So far, all the languages we have defined are based on the eager
evaluation strategy; all the expressions are eagerly evaluated regardless of
whether they are really needed or not.

Consider two FAE expressions (division is supported):

/* FAE */

val a =1 + 2;

val b =5/ 0; // runtime error: division by zero
a *x 3

/* FAE */

val £f = a =>b => a * 3;

f(1 +2)(5 /0 // runtime error: division by zero

Is it possible to delay the evaluation until its result is really needed? Yes!

This is called lazy evaluation.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023

Lazy Evaluation 7NPLRG

For example, Scala supports lazy evaluation for immutable variables with
the lazy keyword and parameters with the => notation.

val a =1 + 2
lazy val b =5 / 0
a* 3 // 9

def f(a: Int, b: => Int): Int = a * 3
f(1+2,5/0 // 9

Now, the value 5 / O for the variable b and the argument 5 / 0 for the
parameter b are not evaluated because they are not really needed.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023

Lazy Evaluation 7NPLRG

Many programming languages support lazy evaluation for many reasons.

e Short-circuit Evaluation: It could avoid unnecessary computations
for boolean expressions.

true && ((6 / 0) < 1) // error -- division by zero
false && ((5 / 0) < 1) // false -- (5/0)<1 is not evaluated
true || ((6/ 0) < 1) // true -- (5/0)<1 is not evaluated
false || ((6 / 0) < 1) // error -- division by zero

Most programming languages (e.g., C++, Java, Python, JavaScript,
and Scala) support short-circuit evaluation for boolean expressions.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 7/27

Lazy Evaluation 7NPLRG

Many programming languages support lazy evaluation for many reasons.

e Optimization: It could optimize the performance by avoiding
unnecessary computations.

def f(x: Int, y: =>Int): Int =
if (x <0) 0
else x *x y
£f(-7, complex(...)) // 0 -- complex(...) is not evaluated

In fact, we already utilized lazy evaluation in our interpreter:

// The definition of “getOrElse” method in “Map"
def getOrElse[V1 >: V](key: K, default: => V1): V1 = ...

// The implementation of interpreter
def interp(expr: Expr, env: Env): Value = expr match

case Id(x) => env.getOrElse(x, error(s"free identifier: $x"))

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 8/27

Lazy Evaluation 7NPLRG

Many programming languages support lazy evaluation for many reasons.

¢ Infinite Data Structures: It makes it possible to define and
manipulate infinite data structures.

® Scala

val nats: LazyList[BigInt] = O #:: nats.map(_ + 1)
nats.take(10) .toList // List(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

® Haskell

let nats = 0 : map (+1) nats
take 10 nats -- [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 9/27

Contents ’VNPLRG

2. LFAE — FAE with Lazy Evaluation
Interpreter and Natural Semantics
Function Application
Addition and Multiplication
Identifier Lookup

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 10 /27

LFAE — FAE with Lazy Evaluation ’MPLRG

Now, let's extend FAE into LFAE to support lazy evaluation. (Assume
that val is supported in FAE as syntactic sugar.)

/* LFAE */ /* LFAE */

val a = 1 + 2; val £ = a => b => a * 3;
val b = ¢ + 3; f(1 + 2)(c + 3) // 9
a * 3 // 9

For LFAE, we don't have to extend any syntax.

Let's focus on how to extend the semantics of FAE to support lazy
evaluation rather than eager evaluation.

While there are diverse ways to define the lazy evaluation semantics, we
will define call-by-name (CBN) semantics for LFAE.

We want to delay the evaluation of argument expressions in function
applications as much as possible until they are really needed.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023

11/27

Interpreter and Natural Semantics ’MPLRG

For LFAE, we need to 1) implement the interpreter with environments:

def interp(expr: Expr, env: Env): Value = 777

and 2) define the natural semantics with environments:

with a new kind of values called expression values for lazy evaluation.

Values V3 v iu=n (NumV)

_\ (Ax.e,0) (CloV)
| {e,0) (ExprV)

enum Value:
case NumV(n: BigInt)
case CloV(p: String, b: Expr, e: Env)
case ExprV(e: Expr, env: Env) // for lazy evaluation

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 12/27

Function Application 7NPLRG

def interp(expr: Expr, env: Env): Value = expr match

case App(f, e) => interp(f, env) match
case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(e, env)))
case v => error(s"not a function: ${v.str}")

ot e = (Ax.e,0) ckbe=>w dx—=wvlFe=w

A
PP ot eo(el) = V2

We want to delay the evaluation of the argument expression e; as much
as possible until it is really needed.

Let's define an expression value (e, o).

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 13 /27

Function Application 7NPLRG

def interp(expr: Expr, env: Env): Value = expr match

case App(f, e) => interp(f, env) match
case CloV(p, b, fenv) => interp(b, fenv + (p -> ExprV(e, env)))
case v => error(s"not a function: ${v.str}")

ot e = (Ax.e,0) d[x— (e, o) F e = v

App
o+ 60(61) =
/* LFAE */
(f => £(1))(x => x+1) // error -- not a function (expression value in f)

Unfortunately, in this expression, f has an expression value (Ax.x + 1,0))
rather than a closure value. It means that we need to evaluate the
expression value {(e, o)) to get a closure value.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 14 /27

Strict Evaluation for Expression Values

’VNPLRG

Let's define the strict evaluation for values to get its real value, a number

or a closure, rather than an expression value.

StrictNum StrictClo

ndn (Ax.e,0) | (Ax.e, o)

ckFe=v vV

(e.o) 4 v/

StrictExpr

def strict(v: Value): Value = v match

case ExprV(e, env) => strict(interp(e, env))
case _ = v

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023

Function Application 7NPLRG

def interp(expr: Expr, env: Env): Value = expr match

case App(f, e) => interp(f, env) match
case CloV(p, b, fenv) => interp(b, fenv + (p -> ExprV(e, env)))
case v => error(s"not a function: ${v.str}")

ol e = (Ax.e2,0") dlx— (e, o) F e = w
oF eo(el) =

App

Let's get the real value of function expression ey by using the strict
evaluation of values to handle if the function expression evaluates to an
expression value.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 16 /27

Function Application 7NPLRG

def interp(expr: Expr, env: Env): Value = expr match

case App(f, e) => strict(interp(f, env)) match
case CloV(p, b, fenv) => interp(b, fenv + (p -> ExprV(e, env)))
case v => error(s"not a function: ${v.str}")

ok e = v v | (\x.ep, ") o [x— (e, o) F e = v

A
PP ot eo(el) = V2

Then, how to handle the identifier lookup and arithmetic operation?

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 17 /27

Addition ’VNPLRG

type BOp = (BigInt, BigInt) => Biglnt

def numBOp(x: String) (op: BOp) (1: Value, r: Value): Value =
(strict(l), strict(r)) match

case (NumV(1), NumV(r)) => NumV(op(l, r))

case (1, r) => error(s"invalid operation: ${1.str} $x ${r.str}")

val numAdd: (Value, Value) => Value = numBOp("+")(_ + _)

def interp(expr: Expr, env: Env): Value = expr match

case Add(1, r) => numAdd(interp(l, env), interp(r, env))

ockbe = wv vlllnl ok e =w V2Un2
ckher+e=nm+m

Add

For addition, we require actual values for both operands to perform

addition. Thus, we need to perform strict evaluation for both operands.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 18 /27

Multiplication ’NPLRG

type BOp = (BigInt, BigInt) => Biglnt
def numBOp(x: String) (op: BOp) (1: Value, r: Value): Value =
(strict(l), strict(r)) match
case (NumV(1), NumV(r)) => NumV(op(l, r))
case (1, r) => error(s"invalid operation: ${1.str} $x ${r.str}")
val numMul: (Value, Value) => Value = numBOp("*")(_ * _)

def interp(expr: Expr, env: Env): Value = expr match

case Mul(l, r) => numMul (interp(l, env), interp(r, env))

ockbe = wv vlllnl ok e =w V2Un2
ok e Xe=nmxn

Mul

Similarly, we need to perform strict evaluation for both operands for
multiplication as well.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 19 /27

|dentifier Lookup 7NPLRG

def interp(expr: Expr, env: Env): Value = expr match
case Id(x) => env.getOrElse(x, error(s"free identifier: $x"))

x € Domain(o)

Id
ok x=o(x)

We will not perform strict evaluation for the value of identifier lookup
because we can just pass the value without knowing its actual value.

/* LFAE */
f =>f))&=>x+1) // 2

Now, it successfully evaluates to 2.

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 20/27

Contents ’VNPLRG

3. Call-by-Name (CBN) vs. Call-by-Need (CBN")
Interpreter for Call-by-Need (CBN')

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 21/27

Call-by-Name (CBN) vs. Call-by-Need (CBN’) MPLRG

In Scala, lazy function parameters are evaluated using call-by-name
evaluation strategy but lazy values are evaluated using call-by-need.

Call-by-Name (CBN) evaluation strategy evaluates delayed expressions
multiple times if they are used multiple times:

def inc(x: Int): Int = { println("inc"); x + 1 }
def mul5(x: => Int): Int = x + x + X + X + X
mul5(inc(1)) // 10 and prints "inc" 5 times

Call-by-Need (CBN') evaluation strategy is a memoized version of CBN,
which evaluates delayed expressions only once at the first time they are
used and then reuses the result:

def inc(x: Int): Int = { println("inc"); x + 1 }
lazy val x: Int = inc(1)
x+x+x+x+x // 10 and prints "inc

only once

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 22/27

Call-by-Name (CBN) vs. Call-by-Need (CBN’) MPLRG

In purely functional languages, CBN’ is equivalent to CBN and only has
performance benefits because it avoids unnecessary re-evaluations.

However, with mutation, CBN' is not equivalent to CBN because it
evaluates function arguments only once the first time they are used, and
thus, it may lead to different results:

var y: Int = 2

def f(x: Int): Int = x + y

def g(z: => Int): Int = { z; y =5; z} // Call-by-Name
g(£(1)) // 1 +5=86

var y: Int = 2

def f(x: Int): Int = x +y

lazy val z: Int = £(1) // Call-by-Need
z; y=5; z // 1 +2=23

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 23 /27

Interpreter for Call-by-Need (CBN’) 'V PLRG

enum Value:
case ExprV(e: Expr, env: Env, var value: Option[Value]) // For caching

def strict(v: Value): Value = v match
case ev @ ExprV(e, env, v) => v match

case Some(cache) => cache // Reuse cached value
case None => // The first use
val cache = interp(e, env) // Evaluate the expression
ev.value = Some(cache) // Cache the value
cache // Return the value
case _ => v

def interp(expr: Expr, env: Env): Value = expr match

case App(f, e) => strict(interp(f, env)) match
// Initialize “value® with “None® to represent no caching
case CloV(p,b,fenv) => interp(b, fenv + (p -> ExprV(e, env, None)))
case Vv => error(s"not a function: ${v.str}")

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 24 /27

Midterm Exam 7V PLRG

The midterm exam will be given in class.

Date: 13:30-14:45 (1 hour 15 minutes), October 25 (Wed.).
® Location: 535, Asan Science Building (OF4£F0| Szt
Coverage: Lectures 1 — 13

Format: 7-9 questions with closed book and closed notes

® Fill in the blank in a Scala code snippet.

Define the syntax or semantics of extended language features.
Write the evaluation results of given expressions.

Yes/No questions about concepts in programming languages.
etc.

Note that there is no class on October 23 (Mon.).

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023

Summary ’VPLRG

1. Lazy Evaluation

2. LFAE — FAE with Lazy Evaluation
Interpreter and Natural Semantics
Function Application
Addition and Multiplication
Identifier Lookup

3. Call-by-Name (CBN) vs. Call-by-Need (CBN")
Interpreter for Call-by-Need (CBN')

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 26 /27

Next Lecture ’VNPLRG

e Continuations

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 13 — Lazy Evaluation October 18, 2023 27 /27

https://plrg.korea.ac.kr

	Lazy Evaluation
	LFAE – FAE with Lazy Evaluation
	Interpreter and Natural Semantics
	Function Application
	Addition and Multiplication
	Identifier Lookup

	Call-by-Name (CBN) vs. Call-by-Need (CBN')
	Interpreter for Call-by-Need (CBN')

