Lecture 16 - First-Class Continuations COSE212: Programming Languages

Jihyeok Park

A)PLRG

2023 Fall

- We will learn about continuations with the following topics:
- Continuations (Lecture 14 \& 15)
- First-Class Continuations (Lecture 16)
- Compiling with continuations (Lecture 17)
- A continuation represents the rest of the computation.
- Continuation Passing Style (CPS)
- Interpreter of FAE in CPS
- Small-step operational (reduction) semantics of FAE
- We will learn about continuations with the following topics:
- Continuations (Lecture 14 \& 15)
- First-Class Continuations (Lecture 16)
- Compiling with continuations (Lecture 17)
- A continuation represents the rest of the computation.
- Continuation Passing Style (CPS)
- Interpreter of FAE in CPS
- Small-step operational (reduction) semantics of FAE
- In this lecture, let's learn first-class continuations.
- We will learn about continuations with the following topics:
- Continuations (Lecture 14 \& 15)
- First-Class Continuations (Lecture 16)
- Compiling with continuations (Lecture 17)
- A continuation represents the rest of the computation.
- Continuation Passing Style (CPS)
- Interpreter of FAE in CPS
- Small-step operational (reduction) semantics of FAE
- In this lecture, let's learn first-class continuations.
- KFAE - FAE with first-class continuations
- Interpreter and Reduction semantics

Contents

1. First-Class Continuations
2. KFAE - FAE with First-Class Continuations

Concrete/Abstract Syntax
3. Interpreter and Reduction Semantics for KFAE

Recall: Interpreter and Reduction Semantics for FAE Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2
4. Control Statements

Contents

1. First-Class Continuations
2. KFAE - FAE with First-Class Continuations

Concrete/Abstract Syntax
3. Interpreter and Reduction Semantics for KFAE

Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2
4. Control Statements

Recall: First-Class Citizen

In a programming language, an entity is said to be first-class citizen if it is treated as a value.

Recall: First-Class Citizen

In a programming language, an entity is said to be first-class citizen if it is treated as a value. In other words, it can be
(1) assigned to a variable,
(2) passed as an argument to a function, and
(3) returned from a function.

Recall: First-Class Citizen

In a programming language, an entity is said to be first-class citizen if it is treated as a value. In other words, it can be
(1) assigned to a variable,
(2) passed as an argument to a function, and
(3) returned from a function.

For example, Scala supports first-class functions.

```
def inc(n: Int): Int = n + 1
// 1. We can assign a function to a variable.
val f: Int => Int = inc
// 2. We can pass a function as an argument to a function.
List(1, 2, 3).map(inc) // List(2, 3, 4)
// 3. We can return a function from a function.
def addN(n: Int): Int => Int = m => n + m
val add3: Int => Int = addN(3)
add3(5)
// 3+5 = 8
```


First-class Continuations

We have learned that a continuation represents the rest of the computation.

```
; prefix notation
; infix notation
(* 2 (+ 3 5)) ; 2 * (3 + 5) = 16
```

(1) Evaluate 2.
(2) Evaluate 3.
(3) Evaluate 5.
(4) Add the results of step 2 and (3).
(5) Multiply the results of step (1) and (2)-4.
(Result: 2)
(Result: 3)
(Result: 5)
(Result: $3+5=8$)
(Result: $2 * 8=16$)

First-class Continuations

We have learned that a continuation represents the rest of the computation.

```
; prefix notation
(* 2 (+ 3 5))
; infix notation
; 2 * (3 + 5) = 16
```

(1) Evaluate 2.
(2) Evaluate 3.
(3) Evaluate 5.
(4) Add the results of step 2 and (3).
(5) Multiply the results of step (1) and 2-4. (Result: $2 * 8=16$)

Similarly, a first-class continuation means that a continuation is treated as a value. For example, Racket supports let/cc to create a first-class continuation.

```
; first-class continuation with `let/cc`
(* 2 (let/cc k (+ 3 (k 5)))) ; 2 * 5 = 10
```


First-class Continuations

```
first-class continuation with `let/cc`
(* 2 (let/cc k (+ 3 (k 5)))) ; 2 * 5 = 10
```

(1) Evaluate 2.
(2) Let k be the continuation of $2-6$.
(3) Evaluate 3.
(4) Evaluate k .
(5) Evaluate 5.
(6) Call the result of step (4) with that of (5).
(7) Add the results of step 3 and (4)-6.
(8) Multiply the results of step (1) and (2)-7.
(Result: 2)
(k is $\mathrm{x}=>2 * \mathrm{x}$)
(Result: 3)
(Result: x => 2 * x)
(Result: 5)
(Replace Cont.)
(Unreachable)
(Result: 2 * 5 = 10)

First-class Continuations

```
; first-class continuation with `let/cc`
(* 2 (let/cc k (+ 3 (k 5)))) ; 2 * 5 = 10
```

(1) Evaluate 2.
(2) Let k be the continuation of $2-6$.
(3) Evaluate 3.
(4) Evaluate k .
(5) Evaluate 5.
(6) Call the result of step (4) with that of (5).
(7) Add the results of step 3 and (4)-6.

8 Multiply the results of step (1) and 2-7). (Result: $2 * 5=10$)
It means that

- The step (2) defines the continuation of 2-7 as a value in k.
- The step 6 replaces the continuation with k with the result of 5 .

First-class Continuations

Some functional languages support first-class continuations.

- Racket

$$
(* 2(\text { let } / \mathrm{cc} \mathrm{k}(+3(\mathrm{k} 5)))) \quad ; 2 * 5=10
$$

- Ruby

```
2 * (callcc { |k| 3 + k.call(5)}) # 2 * 5 = 10
```

- Haskell

```
do
    x <- callCC $ \k -> do
        y <- k 5
    return $ 3 + y
```

 return \$ \(2 * x \quad--2 * 5=10\)

Contents

1. First-Class Continuations
2. KFAE - FAE with First-Class Continuations

Concrete/Abstract Syntax
3. Interpreter and Reduction Semantics for KFAE

Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2
4. Control Statements

KFAE - FAE with First-Class Continuations

Now, let's extend FAE into KFAE to support first-class continuations. (Assume that val is supported in FAE as syntactic sugar.)

```
/* KFAE */
2 * { vcc k; 3 + k(5) } // 2 * 5 = 10
```


KFAE - FAE with First-Class Continuations

Now, let's extend FAE into KFAE to support first-class continuations. (Assume that val is supported in FAE as syntactic sugar.)

```
/* KFAE */
2 * { vcc k; 3 + k(5) } // 2 * 5 = 10
```

```
/* KFAE */
{
    vcc done; // done = x => x
    val f = {
        vcc exit; // exit = x => val f = x; f(3) * 5
        2 * done(1 + {
                vcc k; // k = x => val f = { 2 * done(1 + x) }; f(3) * 5
                exit(k)
        })
    };
    f(3) * 5
}
// 1 + 3
```


Concrete/Abstract Syntax

For KFAE, we need to extend expressions of FAE with
(1) first-class continuations (vcc)

Concrete/Abstract Syntax

For KFAE, we need to extend expressions of FAE with
(1) first-class continuations (vcc)

We can extend the concrete syntax of FAE as follows:

```
// expressions
<expr> ::= ... | "vcc" <id> ";" <expr>
```


Concrete/Abstract Syntax

For KFAE, we need to extend expressions of FAE with
(1) first-class continuations (vcc)

We can extend the concrete syntax of FAE as follows:

```
// expressions
<expr> ::= ... | "vcc" <id> ";" <expr>
```

and the abstract syntax of FAE as follows:

$$
\text { Expressions } \quad \mathbb{E} \ni e::=\ldots \mid \text { vcc } x ; e \quad \text { (Vcc) }
$$

```
enum Expr:
    // first-class continuations
    case Vcc(name: String, body: Expr)
```


Contents

1. First-Class Continuations
2. KFAE - FAE with First-Class Continuations Concrete/Abstract Syntax
3. Interpreter and Reduction Semantics for KFAE

Recall: Interpreter and Reduction Semantics for FAE Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2
4. Control Statements

Recall: Interpreter and Reduction Sem. for FAE

In the previous lecture, we have defined the first-order representation of continuations with value stack:

```
enum Cont:
    case EmptyK
    case EvalK(env: Env, expr: Expr, k: Cont)
    case AddK(k: Cont)
    case MulK(k: Cont)
    case AppK(k: Cont)
type Stack = List[Value]
```

Continuations $\mathbb{K} \ni \kappa::=\square$		(EmptyK)	
	$\mid(\sigma \vdash e):: \kappa$	(EvalK)	
	$\mid(+):: \kappa$		(AddK)
	$\mid(\times):: \kappa$	(MulK)	
		$\mid(@):: \kappa$	(AppK)
Value Stacks	$\mathbb{S} \ni s::=\square \mid v:: s$		(List[Value])

Recall: Interpreter and Reduction Sem. for FAE

Then, we have defined the reduction relation $\rightarrow \in(\mathbb{K} \times \mathbb{S}) \times(\mathbb{K} \times \mathbb{S})$ between states consisting of pairs of continuations and value stacks:

```
def reduce(k: Cont, s: Stack): (Cont, Stack) = ???
```

$$
\langle\kappa \| s\rangle \rightarrow\left\langle\kappa^{\prime} \| s^{\prime}\right\rangle
$$

Then, we have defined the reduction relation $\rightarrow \in(\mathbb{K} \times \mathbb{S}) \times(\mathbb{K} \times \mathbb{S})$ between states consisting of pairs of continuations and value stacks:

```
def reduce(k: Cont, s: Stack): (Cont, Stack) = ???
```

$$
\langle\kappa \| s\rangle \rightarrow\left\langle\kappa^{\prime} \| s^{\prime}\right\rangle
$$

And the eval function iteratively reduces the state until it reaches the empty continuation \square and returns the single value in the value stack:

```
def eval(str: String): String =
    import Cont.*
    def aux(k: Cont, s: Stack): Value = reduce(k, s) match
        case (EmptyK, List(v)) => v
        case (k, s) => aux(k, s)
    aux(EvalK(Map.empty, Expr(str), EmptyK), List.empty).str
```

$$
\langle(\varnothing \vdash e):: \square \| \square\rangle \rightarrow^{*}\langle\square \| v:: \square\rangle
$$

Interpreter and Reduction Semantics for KFAE

Now, let's extend the interpreter and reduction semantics for FAE to KFAE by adding the first-class continuations.

First, we need to extend the values of FAE with continuation values consisting of pairs of continuations and value stacks:

```
// values
enum Value:
    case NumV(number: BigInt)
    case CloV(param: String, body: Expr, env: Env)
    case ContV(cont: Cont, stack: Stack)
```

Values | $\mathbb{V} \ni v::$ | $=n$ | | (NumV) |
| ---: | :--- | ---: | :--- |
| | $\mid\langle\lambda x . e, \sigma\rangle$ | (CloV) | |
| | $\mid\langle\kappa \\| s\rangle$ | | (ContV) |

Then, let's fill out the missing cases in the reduce function and reduction rules for \rightarrow in the reduction semantics of KFAE.

First-Class Continuations

```
def reduce(k: Cont, s: Stack): (Cont, Stack) = (k, s) match
```

 case (EvalK (env, expr, k), s) => expr match
 case \(\operatorname{Vcc}(\mathrm{x}, \mathrm{b}) \Rightarrow(\operatorname{EvalK}(\mathrm{env}+(\mathrm{x} \rightarrow \operatorname{ContV}(\mathrm{k}, \mathrm{s})), \mathrm{b}, \mathrm{k}), \mathrm{s})\)
 $$
\langle\kappa \| s\rangle \rightarrow\langle\kappa \| s\rangle
$$

$\operatorname{Vcc}\langle(\sigma \vdash \operatorname{vcc} x ; e):: \kappa \| s\rangle \quad \rightarrow \quad\langle(\sigma[x \mapsto\langle\kappa \| s\rangle] \vdash e):: \kappa \| s\rangle$

It defines a new immutable binding x in the environment σ that maps to a continuation value $\langle\kappa \| s\rangle$, and then evaluates the body expression e in the extended environment $\sigma[x \mapsto\langle\kappa \| s\rangle]$.

Function Application

```
def reduce(k: Cont, s: Stack): (Cont, Stack) = (k, s) match
```

 case (EvalK (env, expr, k), s) => expr match
    ```
case App(f, e) => (EvalK(env, f, EvalK(env, e, AppK(k))), s)
```

 ...
 case (AppK(k), a :: f :: s) => f match
 case \(\operatorname{CloV}(p, b, f e n v)=>(E v a l K(f e n v+(p->a), b, k), s)\)
 case \(\operatorname{ContV}(k 1, s 1) \quad \Rightarrow\) (k1, a :: s1)
 case v \(\quad \Rightarrow\) error (s"not a function: \$\{v.str\}")
 $$
\langle\kappa \| s\rangle \rightarrow\langle\kappa \| s\rangle
$$

$$
\begin{array}{llll}
\operatorname{App}_{1} & \left\langle\left(\sigma \vdash e_{1}\left(e_{2}\right)\right):: \kappa \| s\right\rangle & \rightarrow & \left\langle\left(\sigma \vdash e_{1}\right)::\left(\sigma \vdash e_{2}\right)::(@):: \kappa \| s\right\rangle \\
\operatorname{App}_{2, \lambda} & \left\langle(@):: \kappa \| v_{2}::\langle\lambda x \cdot e, \sigma\rangle:: s\right\rangle & \rightarrow & \left\langle\left(\sigma\left[x \mapsto v_{2}\right] \vdash e\right):: \kappa \| s\right\rangle \\
\operatorname{App}_{2, \kappa} & \left\langle(@):: \kappa \| v_{2}::\left\langle\kappa^{\prime} \| s^{\prime}\right\rangle:: s\right\rangle & \rightarrow & \left\langle\kappa^{\prime} \| v_{2}:: s^{\prime}\right\rangle
\end{array}
$$

The new $\mathrm{App}_{2, \kappa}$ rule handles when the function expression evaluates to a continuation value $\left\langle\kappa^{\prime} \| s^{\prime}\right\rangle$. It changes the control flow to the continuation κ^{\prime} with the given argument value v_{2} and the value stack s^{\prime}.

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

$$
\langle(\varnothing \vdash 2 \times(\operatorname{vcc} k ;(3+k(5)))):: \square
$$

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

where $\left\{\begin{array}{l}\sigma_{0}=\left[k \leftrightarrow\left\langle\kappa_{0} \| s_{0}\right\rangle\right] \\ \kappa_{0}=(\times):: \square \\ s_{0}=2:: \square\end{array}\right.$

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

$$
\text { where }\left\{\begin{array}{l}
\sigma_{0}=\left[k \leftrightarrow\left\langle\kappa_{0} \| s_{0}\right\rangle\right] \\
\kappa_{0}=(\times): \because \square \\
s_{0}=2:: \square
\end{array}\right.
$$

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

$$
\text { where }\left\{\begin{array}{l}
\sigma_{0}=\left[k \leftrightarrow\left\langle\kappa_{0} \| s_{0}\right\rangle\right] \\
\kappa_{0}=(\times): \because \square \\
s_{0}=2:: \square
\end{array}\right.
$$

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

$$
\text { where }\left\{\begin{array}{l}
\sigma_{0}=\left[k \mapsto\left\langle\kappa_{0} \| s_{0}\right\rangle\right] \\
\kappa_{0}=(\times):: \square \\
s_{0}=2:: \square
\end{array}\right.
$$

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

$$
\text { where }\left\{\begin{array}{l}
\sigma_{0}=\left[k \mapsto\left\langle\kappa_{0} \| s_{0}\right\rangle\right] \\
\kappa_{0}=(\times):: \square \\
s_{0}=2:: \llbracket
\end{array}\right.
$$

Example 1

Let's interpret the expression $2 \times(\operatorname{vcc} k ;(3+k(5)))$:

$$
\text { where }\left\{\begin{array}{l}
\sigma_{0}=\left[k \leftrightarrow\left\langle\kappa_{0} \| s_{0}\right\rangle\right] \\
\kappa_{0}=(\times):: \square \\
s_{0}=2:: \square
\end{array}\right.
$$

Example 2

Let's interpret the expression $(\lambda x .(v c c r ; r(x+1) \times 2))(3)$:

Example 2

Let's interpret the expression $(\lambda x .(\mathrm{vcc} r ; r(x+1) \times 2))(3)$:

$$
\langle(\varnothing \vdash(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3))): \square
$$

where $\{$

Example 2

Let's interpret the expression $(\lambda x$.(vcc $r ; r(x+1) \times 2))(3)$:

$$
\left(\operatorname{App}_{\rightarrow}\right)\left\langle\begin{array}{l}
\langle(\varnothing \vdash(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3))): \square \\
\langle(\varnothing \vdash(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2)))::(\varnothing \vdash 3)::(@):: \square \| \square
\end{array}\right.
$$

where $\{$

Example 2

Let's interpret the expression $(\lambda x$.(vcc $r ; r(x+1) \times 2))(3)$:

$$
\begin{aligned}
& \text { (App }_{1} \text {) }\langle(\varnothing \vdash(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3)):: \\
& \xrightarrow{\left(\text { Fpun }^{\longrightarrow}\right)}\langle(\varnothing \vdash(\lambda x \cdot(\operatorname{vcc} r ; r(x+1) \times 2)))::(\varnothing+3)::(@):: \square \\
& \text { || }\langle\lambda x . e 0, \varnothing\rangle \text { ::■ }
\end{aligned}
$$

where $\left\{\begin{array}{l}e_{0}=\operatorname{vcc} r ; r(x+1) \times 2\end{array}\right.$

Example 2

Let's interpret the expression $(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3)$:

```
(App \(_{1}\) ) \(\langle(\varnothing \vdash(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3))::\)
```

```
(App \(_{1}\) ) \(\langle(\varnothing \vdash(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3))::\)
```


Example 2

Let's interpret the expression $(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3)$:

$$
\text { where }\left\{\begin{array}{l}
e_{0}=\text { vcc } r ; r(x+1) \times 2 \\
\sigma_{0}=[x \mapsto 3]
\end{array}\right.
$$

Example 2

Let's interpret the expression $(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3)$:

$$
\begin{aligned}
& \text { (App }_{1} \text { 〈 }\langle(\varnothing \vdash(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3))::
\end{aligned}
$$

$$
\begin{aligned}
& \|\langle\lambda x \cdot e 0, \varnothing\rangle:: \text { ■ }\rangle \\
& \left.\| 3::\left\langle\lambda x . e_{0}, \varnothing\right\rangle:: ■\right\rangle \\
& \text { (App }{ }_{2, \lambda} \text {) } \\
& \text { ((@) :: } \square \\
& \left\langle\left(\sigma_{0} \vdash \operatorname{vcc} r ; r(x+1) \times 2\right):: \square\right. \\
& (\overrightarrow{\mathrm{ccc}}) \\
& \left\langle\left(\sigma_{1} \vdash r(x+1) \times 2\right)::\right.
\end{aligned}
$$

$$
\text { where }\left\{\begin{array}{l}
e_{0}=\text { vac } r ; r(x+1) \times 2 \\
\sigma_{0}=[x \leftrightarrow 3] \\
\sigma_{1}=\sigma_{0}[r \mapsto\langle\square||\mathbf{\square}\rangle]
\end{array}\right.
$$

Example 2

Let's interpret the expression $(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3)$:

$$
|\mid\langle\lambda x . e 0, \varnothing\rangle:: ■
$$

$$
\left.\| 3::\left\langle\lambda x . e_{0}, \varnothing\right\rangle:: ■\right\rangle
$$

$$
\| ■
$$

$$
\text { where }\left\{\begin{array}{l}
e_{0}=\operatorname{vcc} r ; r(x+1) \times 2 \\
\sigma_{0}=[x \leftrightarrow 3] \\
\sigma_{1}=\sigma_{0}[r \mapsto\langle\square \| \mathbf{\square}\rangle]
\end{array}\right.
$$

Example 2

Let's interpret the expression $(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3)$:

$$
\begin{aligned}
& \text { where }\left\{\begin{aligned}
e_{0} & =\text { vcc } r ; r(x+1) \times 2 \\
\sigma_{0} & =[x \rightarrow 3] \\
\sigma_{1} & =\sigma_{0}[r \mapsto\langle\square||\mathbf{■}\rangle]
\end{aligned}\right.
\end{aligned}
$$

Example 2

Let's interpret the expression $(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3)$:

$$
\begin{aligned}
& \rightarrow * \quad\left\langle(@)::\left(\sigma_{1} \vdash 2\right)::(\times):: \square\right. \\
& \text { || } 4::\langle\square||\square\rangle:: \text { ■ } \\
& \text { where }\left\{\begin{aligned}
e_{0} & =v \operatorname{vcc} r ; r(x+1) \times 2 \\
\sigma_{0}= & {[x \leftrightarrow 3] } \\
\sigma_{1} & =\sigma_{0}[r \mapsto\langle\square \| \llbracket]]
\end{aligned}\right.
\end{aligned}
$$

Example 2

Let's interpret the expression $(\lambda x .(\operatorname{vcc} r ; r(x+1) \times 2))(3)$:

$$
\begin{aligned}
& \text { || } 4::\langle\square||\mathbf{\square}\rangle:=\text { ■ } \\
& \text { || } 4 \text { :: } \\
& \text { where }\left\{\begin{aligned}
& e_{0}=v \operatorname{vcc} r ; r(x+1) \times 2 \\
& \sigma_{0}= {[x \leftrightarrow 3] } \\
& \sigma_{1}= \\
& \sigma_{0}[r \mapsto\langle\square \| \square\rangle]
\end{aligned}\right.
\end{aligned}
$$

Contents

1. First-Class Continuations

2. KFAE - FAE with First-Class Continuations

Concrete/Abstract Syntax
3. Interpreter and Reduction Semantics for KFAE

Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2
4. Control Statements

Control Statements

Many real-world programming languages support control statements to change the control-flow of a program.

Control Statements

Many real-world programming languages support control statements to change the control-flow of a program.

For example, C++ supports break, continue, and return statements:

```
int sumEvenUntilZero(int xs[], int len) {
    if (len <= 0) return 0; // directly return 0 if len <= 0
    int sum = 0;
    for (int i = 0; i < len; i++) {
        if (xs[i] == 0) break; // stop the loop if xs[i] == 0
        if (xs[i] % 2 == 1) continue; // skip the rest if xs[i] is odd
        sum += xs[i];
    }
    return sum; // finally return the sum
}
int xs[] = {4, 1, 3, 2, 0, 6, 5, 8};
sumEvenUntilZero(xs, 8); // 4 + 2 = 6
```

Let's represent them using first-class continuations!

Control Statements

- return statement:

```
x => body
```


Control Statements

- return statement:

```
x => body
```

means

```
x => { vcc return;
    body // return(e) directly returns e to the caller
}
```


Control Statements

- return statement:

```
x => body
```

means

```
x => { vcc return;
    body // return(e) directly returns e to the caller
}
```

- break and continue statements:

```
while (cond) body
```


Control Statements

- return statement:

$$
x=>\text { body }
$$

means

```
x => { vcc return;
    body // return(e) directly returns e to the caller
}
```

- break and continue statements:

```
while (cond) body
means
{ vcc break;
    while (cond) { vcc continue;
    body // continue(e)/break(e) jumps to the next/end of the loop
    }
}
```


Control Statements

We can represent other control statements similarly, but think for yourself!

- exception in Python

```
try:
    x = y / z
except ZeroDivisionError:
    x = 0
```

- generator in JavaScript

```
const foo = function* () { yield 'a'; yield 'b'; yield 'c'; };
let str = '';
for (const c of foo()) { str = str + c; }
str // 'abc'
```

- coroutines in Kotlin
- async/await in C\#

Summary

1. First-Class Continuations
2. KFAE - FAE with First-Class Continuations

Concrete/Abstract Syntax
3. Interpreter and Reduction Semantics for KFAE

Recall: Interpreter and Reduction Semantics for FAE Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2
4. Control Statements

Exercise \#9

- Please see this document ${ }^{1}$ on GitHub.
- Implement reduce function.
- It is just an exercise, and you don't need to submit anything.
- However, some exam questions might be related to this exercise.
${ }^{1}$ https://github.com/ku-plrg-classroom/docs/tree/main/cose212/kfae.

Next Lecture

- Compiling with Continuations

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

