
Lecture 17 – Compiling with Continuations
COSE212: Programming Languages

Jihyeok Park

2023 Fall

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 1 / 35



Recall
• We will learn about continuations with the following topics:

• Continuations (Lecture 14 & 15)
• First-Class Continuations (Lecture 16)
• Compiling with continuations (Lecture 17)

• A continuation represents the rest of the computation.
• Continuation Passing Style (CPS)
• First-Class Continuations
• KFAE – FAE with first-class continuations

• In this lecture, let’s learn compiling with continuations.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 2 / 35



Contents

1. Compilers

2. Compiling with Continuations
Continuation Passing Style
Lambda Lifting
Closure Conversion
Alpha Renaming
Transformation to Low-level IR
Optimization of Low-level IR

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 3 / 35



Contents

1. Compilers

2. Compiling with Continuations
Continuation Passing Style
Lambda Lifting
Closure Conversion
Alpha Renaming
Transformation to Low-level IR
Optimization of Low-level IR

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 4 / 35



Compilers
A compiler is a program that translates a program written in one
language (the source language) into an equivalent program in another
language (the target language).

Compiler

Source Code (String)

Machine Code (String)

Typically, the source language is a high-level language (e.g., Scala,
Python, JavaScript, etc.) and the target language is a low-level language
(e.g., JVM bytecode, LLVM IR, assembly, etc.).

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 5 / 35



Compilers
The following figure shows a typical compilation process:

Parser

Source Code (String)

AST (Abstract Syntax Tree)

IR Generator

IR (Intermediate Representation)

Type Checker

(Optional)

Optimization

Asm Generator

Assembly

Printer

Machine Code (String)

IR Analyzer

1D-to-2D

Simple-yet-General Form

Arch-specific-Form

Bit-Sequence

Let’s focus on the IR Generator to learn how to compile with functional
languages with continuations into a low-level IR.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 6 / 35



Compiling Functional Languages
How to compile our functional languages into a low-level IR?

/* FAE */
val twice = f => {

a => f(f(a))
};
twice({

b => b * 2 + 1
})(3) + 5

=⇒

/* IR */
F1:

mov r4, r3
jmp r2

F2:
mov r4, F1
jmp r2

F3:
mov r1, F2
jmp r2

F4:
mul r1, r1, 2
add r1, r1, 1
jmp r4

F5:
add r1, r1, 5
jmp HALT

F6:
mov r4, r1
mov r1, 3
mov r2, F4
mov r3, F5
jmp r4

START:
mov r1, F4
mov r2, F6
jmp F3

HALT:

Let’s learn how to compile with continuations!

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 7 / 35



Contents

1. Compilers

2. Compiling with Continuations
Continuation Passing Style
Lambda Lifting
Closure Conversion
Alpha Renaming
Transformation to Low-level IR
Optimization of Low-level IR

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 8 / 35



Recall: Continuation-Passing Style (CPS)
We learned that continuation-passing style (CPS) is a style of
programming that passes the continuation as an explicit parameter to a
function and calls it to give the result to the continuation.

For example, consider the following Scala code written in direct style:

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

sum(3) * 5 // (1 + 2 + 3) * 5 = 30

We can rewrite it in continuation-passing style as follows:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int =

if (n <= 1) k(1)
else sumCPS(n - 1, x => k(x + n))

sumCPS(3, x => x * 5) // (1 + 2 + 3) * 5 = 30

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 9 / 35



Continuation-Passing Style (CPS)
Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val twice = f => {

a => f(f(a))
};
twice({

b => b * 2 + 1
})(3) + 5

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 10 / 35



Continuation-Passing Style (CPS)
Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val HALT = x => x;
val twice = f => {

a => f(f(a))
};
HALT(twice({

b => b * 2 + 1
})(3) + 5)

Let’s transform the twice function into CPS.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 11 / 35



Continuation-Passing Style (CPS)
Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1(a => f(f(a)))
};
twice({

b => b * 2 + 1
}, x1 => HALT(x1(3) + 5))

Let’s transform the a => f(f(a)) function into CPS.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 12 / 35



Continuation-Passing Style (CPS)
Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => k2(f(f(a))))
};
twice({

b => b * 2 + 1
}, x1 => x1(3, x2 => HALT(x2 + 5)))

Let’s transform the body of x2 => HALT(x2 + 5) into CPS using the
syntactic sugar for val.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 13 / 35



Continuation-Passing Style (CPS)
Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => k2(f(f(a))))
};
twice({

b => b * 2 + 1
}, x1 => x1(3, x2 => {

val x3 = x2 + 5;
HALT(x3)

})

Let’s transform the b => b * 2 + 1 function into CPS.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 14 / 35



Continuation-Passing Style (CPS)
Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
twice({

(b, k3) => k3(b * 2 + 1)
}, x1 => x1(3, x2 => {

val x3 = x2 + 5;
HALT(x3)

}))

Let’s transform the body of (b, k3) => k3(b * 2 + 1) into CPS using
the syntactic sugar for val.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 15 / 35



Continuation-Passing Style (CPS)
Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
twice((b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

}, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT(x3)

}))

This is the CPS version of our running example.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 16 / 35



Lambda Lifting
A lambda lifting transformation lifts nested functions to top-level
functions.

Let’s apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
twice((b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

}, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT(x3)

}))

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 17 / 35



Lambda Lifting
Let’s apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
twice((b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

}, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT(x3)

}))

First, let’s lift the (b, k3) => ... function to top-level.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 18 / 35



Lambda Lifting
Let’s apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

};
twice(x7, x1 => x1(3, x2 => {

val x3 = x2 + 5;
HALT(x3)

}))

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 19 / 35



Lambda Lifting
Let’s apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

};
twice(x7, x1 => x1(3, x2 => {

val x3 = x2 + 5;
HALT(x3)

}))

Next, let’s lift the x2 => ... function to top-level.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 20 / 35



Lambda Lifting
Let’s apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

};
val C1 = x2 => {

val x3 = x2 + 5;
HALT(x3)

};
twice(x7, x1 => x1(3, C1))

We use the name Ck to denote that the function is a continuation.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 21 / 35



Lambda Lifting
Let’s apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

};
val C1 = x2 => {

val x3 = x2 + 5;
HALT(x3)

};
twice(x7, x1 => x1(3, C1))

Let’s lift the x1 => ... function to top-level.

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 22 / 35



Lambda Lifting
Let’s apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

};
val C1 = x2 => {

val x3 = x2 + 5;
HALT(x3)

};
val C2 = x1 => x1(3, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 23 / 35



Lambda Lifting
We cannot lift the (a, k2) => ... and x4 => ... functions because f
is their captured variable from the twice function.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

};
val C1 = x2 => {

val x3 = x2 + 5;
HALT(x3)

};
val C2 = x1 => x1(3, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 24 / 35



Lambda Lifting
Similarly, k2 in the x4 => ... function is also a captured variable from
the (a, k2) => ... function.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

};
val C1 = x2 => {

val x3 = x2 + 5;
HALT(x3)

};
val C2 = x1 => x1(3, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 25 / 35



Closure Conversion
To resolve this problem, we need to perform closure conversion by
passing the captured variables as arguments to the function.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6)

};
val C1 = x2 => {

val x3 = x2 + 5;
HALT(x3)

};
val C2 = x1 => x1(3, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 26 / 35



Closure Conversion
There are diverse closure conversion algorithms, but we skip their details
in this course. If we perform one of them, the result is as follows.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {

k1((a, f1, k2) => f1(a, f1, k2, (x4, f2, k4) => f2(x4, f2, k4, k4)))
};
val x7 = (b, f3, k5, k3) => {

val x5 = b * 2;
val x6 = x5 + 1;
k3(x6, f3, k5)

};
val C1 = (x2, f4, k6) => {

val x3 = x2 + 5;
HALT(x3)

};
val C2 = x1 => x1(3, x7, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 27 / 35



Closure Conversion
Finally, we can perform lambda lifting transformation for remaining
functions as follows:

/* FAE */
val HALT = x => x;
val C3 = (x4, f2, k4) => {

f2(x4, f2, k4, k4)
};
val C4 = (a, f1, k2) => {

f1(a, f1, k2, C3)
};
val twice = (f, k1) => {

k1(C4)
};

val x7 = (b, f3, k5, k3) => {
val x5 = b * 2;
val x6 = x5 + 1;
k3(x6, f3, k5)

};
val C1 = (x2, f4, k6) => {

val x3 = x2 + 5;
HALT(x3)

};
val C2 = x1 => {

x1(3, x7, C1)
};
twice(x7, C2)

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 28 / 35



Closure Conversion
Now, our transformed code satisfies the following conditions.

1 Every function is in the top-level scope.
2 Every function call is in tail position.
3 Every function always ends with function call.

/* FAE */
val HALT = x => x;
val C3 = (x4, f2, k4) => {

f2(x4, f2, k4, k4)
};
val C4 = (a, f1, k2) => {

f1(a, f1, k2, C3)
};
val twice = (f, k1) => {

k1(C4)
};

val x7 = (b, f3, k5, k3) => {
val x5 = b * 2;
val x6 = x5 + 1;
k3(x6, f3, k5)

};
val C1 = (x2, f4, k6) => {

val x3 = x2 + 5;
HALT(x3)

};
val C2 = x1 => {

x1(3, x7, C1)
};
twice(x7, C2)

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 29 / 35



Alpha Renaming
To easily convert the code into the low-level IR, we need to perform
alpha renaming to make every variable name unique and in a consistent
manner (Fk: k-th function, xk: k-th parameter).

/* FAE */
val HALT = x => x;
val F1 = (x1, x2, x3) => {

x2(x1, x2, x3, x3)
};
val F2 = (x1, x2, x3) => {

x2(x1, x2, x3, F1)
};
val F3 = (x1, x2) => {

x2(F2)
};

val F4 = (x1, x2, x3, x4) => {
val x5 = x1 * 2;
val x6 = x5 + 1;
x4(x6, x2, x3)

};
val F5 = (x1, x2, x3) => {

val x4 = x1 + 5;
HALT(x4)

};
val F6 = x1 => {

x1(3, F4, F5)
};
F3(F4, F6)

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 30 / 35



Transformation to Low-level IR
Now, we can easily convert the code into the low-level IR.

F1:
mov x1, a1
mov x2, a2
mov x3, a3
mov a1, x1
mov a2, x2
mov a3, x3
mov a4, x3
jmp x2

F2:
mov x1, a1
mov x2, a2
mov x3, a3
mov a1, x1
mov a2, x2
mov a3, x3
mov a4, F1
jmp x2

F3:
mov x1, a1
mov x2, a2
mov a1, F2
jmp x2

F4:
mov x1, a1
mov x2, a2
mov x3, a3
mov x4, a4
mul x5, x1, 2
add x6, x5, 1
mov a1, x6
mov a2, x2
mov a3, x3
jmp x4

F5:
mov x1, a1
mov x2, a2
mov x3, a3
add x4, x1, 5
mov a1, x4
jmp HALT

F6:
mov x1, a1
mov a1, 3
mov a2, F4
mov a3, F5
jmp x1

START:
mov a1, F4
mov a2, F6
jmp F3

HALT:

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 31 / 35



Optimization of Low-level IR
The following lines of code are actually unnecessary:

F1:
mov x1, a1
mov x2, a2
mov x3, a3
mov a1, x1
mov a2, x2
mov a3, x3
mov a4, x3
jmp x2

F2:
mov x1, a1
mov x2, a2
mov x3, a3
mov a1, x1
mov a2, x2
mov a3, x3
mov a4, F1
jmp x2

F3:
mov x1, a1
mov x2, a2
mov a1, F2
jmp x2

F4:
mov x1, a1
mov x2, a2
mov x3, a3
mov x4, a4
mul x5, x1, 2
add x6, x5, 1
mov a1, x6
mov a2, x2
mov a3, x3
jmp x4

F5:
mov x1, a1
mov x2, a2
mov x3, a3
add x4, x1, 5
mov a1, x4
jmp HALT

F6:
mov x1, a1
mov a1, 3
mov a2, F4
mov a3, F5
jmp x1

START:
mov a1, F4
mov a2, F6
jmp F3

HALT:

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 32 / 35



Optimization of Low-level IR
After removing all unnecessary lines of code and assign registers based on
the graph coloring algorithm, we get the following code:

/* IR */
F1:

mov r4, r3
jmp r2

F2:
mov r4, F1
jmp r2

F3:
mov r1, F2
jmp r2

F4:
mul r1, r1, 2
add r1, r1, 1
jmp r4

F5:
add r1, r1, 5
jmp HALT

F6:
mov r4, r1
mov r1, 3
mov r2, F4
mov r3, F5
jmp r4

START:
mov r1, F4
mov r2, F6
jmp F3

HALT:

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 33 / 35



Summary

1. Compilers

2. Compiling with Continuations
Continuation Passing Style
Lambda Lifting
Closure Conversion
Alpha Renaming
Transformation to Low-level IR
Optimization of Low-level IR

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 34 / 35



Next Lecture
• Type Systems

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 17 – Compiling with Continuations November 8, 2023 35 / 35

https://plrg.korea.ac.kr

	Compilers
	Compiling with Continuations
	Continuation Passing Style
	Lambda Lifting
	Closure Conversion
	Alpha Renaming
	Transformation to Low-level IR
	Optimization of Low-level IR


