Lecture 17 — Compiling with Continuations

COSE212: Programming Languages

Jihyeok Park

NPLRG

2023 Fall

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Recall ’VNPLRG

e \We will learn about continuations with the following topics:
¢ Continuations (Lecture 14 & 15)
¢ First-Class Continuations (Lecture 16)
® Compiling with continuations (Lecture 17)

e A continuation represents the rest of the computation.
¢ Continuation Passing Style (CPS)
® First-Class Continuations
® KFAE — FAE with first-class continuations

® In this lecture, let's learn compiling with continuations.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Contents ’VNPLRG

1. Compilers

2. Compiling with Continuations
Continuation Passing Style
Lambda Lifting
Closure Conversion
Alpha Renaming
Transformation to Low-level IR
Optimization of Low-level IR

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Contents ’VNPLRG

1. Compilers

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Compilers

’VNPLRG
A compiler is a program that translates a program written in one

language (the source language) into an equivalent program in another
language (the target language).

Source Code (String)

Machine Code (String)
Typically, the source language is a high-level language (e.g., Scala,

Python, JavaScript, etc.) and the target language is a low-level language
(e.g., JVM bytecode, LLVM IR, assembly, etc.).

COSE212 @ Korea University

Lecture 17 — Compiling with Continuations

November 8, 2023

Compilers ’NPLRG

The following figure shows a typical compilation process:

Source Code (String)

o =

AST (Abstract Syntax Tree) ——>RI7 L& ET

. (Optional)
Simple-yet-General Form --------- IR Generator

IR (Intermediate Representation) Optimization
Arch-specific-cForm --------- Asm Generator -
IR Analyzer

Assembly

Bit-Sequence s-e-eee- m

Machine Code (String)

i

Let's focus on the IR Generator to learn how to compile with functional
languages with continuations into a low-level IR.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Compiling Functional Languages ’VPLRG

How to compile our functional languages into a low-level IR?

/* FAE */ /* IR */
val twice = f => { Fi: F5:

a => f(f(a)) mov r4, r3 add r1, r1, 5
}; _— jmp r2 jmp HALT
twice({ F2: F6:

b=>bx*x2+1 mov r4, F1 mov r4, ril
@) +5 jmp 2 mov rl, 3

F3: mov r2, F4
mov rl, F2 mov r3, F5
jmp r2 jmp ré
F4: START:
mul ri1, rl1, 2 mov rl, F4
add r1, r1, 1 mov r2, F6
jmp ré jmp F3
HALT:

Let’s learn how to compile with continuations!

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Contents ’VNPLRG

2. Compiling with Continuations
Continuation Passing Style
Lambda Lifting
Closure Conversion
Alpha Renaming
Transformation to Low-level IR
Optimization of Low-level IR

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Recall: Continuation-Passing Style (CPS) ’MPLRG

We learned that continuation-passing style (CPS) is a style of
programming that passes the continuation as an explicit parameter to a
function and calls it to give the result to the continuation.

For example, consider the following Scala code written in direct style:

def sum(n: Int): Int =
if (n<=1) 1
else sum(n - 1) + n
sum(3) * 5 // (1 +2+3) x5 =30

We can rewrite it in continuation-passing style as follows:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int =
if (n <= 1) k(1)
else sumCPS(n - 1, x => k(x + n))
sumCPS(3, x => x * b5) // (1 + 2+ 3) x5 =230

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Continuation-Passing Style (CPS) 'V PLRG

Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */

val twice = f => {
a => f(f(a))

};

twice({
b=>bx*x2+1

»@ +5

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 10/35

Continuation-Passing Style (CPS)

’VNPLRG

Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */

val HALT = x => x;

val twice = f => {
a => f(f(a))

};

HALT (twice ({
b=>b=x2+ 1

»@) +5)

Let's transform the twice function into CPS.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations

November 8, 2023

11/35

Continuation-Passing Style (CPS)

Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

’VNPLRG

/* FAE */

val HALT = x => x;

val twice = (f, k1) => {
ki(a => £(£(a)))

};

twice ({
b=>b=x2+ 1

}, x1 => HALT(x1(3) + 5))

Let's transform the a => £ (f(a)) function into CPS.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 12/35

Continuation-Passing Style (CPS) 'V PLRG

Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {
k1((a, k2) => k2(f(£(a))))
};
twice({
b=>b=x2+ 1
}, x1 => x1(3, x2 => HALT(x2 + 5)))

Let's transform the body of x2 => HALT(x2 + 5) into CPS using the
syntactic sugar for val.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 13/35

Continuation-Passing Style (CPS)

Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

’VNPLRG

/* FAE */

val HALT = x => x;

val twice = (f, k1) => {
k1((a, k2) => k2(£f(£(a))))

};

twice({
b=>bx*x2+1

}, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT (x3)

iD)

Let's transform the b => b * 2 + 1 function into CPS.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Continuation-Passing Style (CPS) 'V PLRG

Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => (x4, k2)))
};
twice ({
(b, k3) => k3(b * 2 + 1)
}, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT (x3)
»)

Let’'s transform the body of (b, k3) => k3(b * 2 + 1) into CPS using
the syntactic sugar for val.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 15/35

Continuation-Passing Style (CPS) 'V PLRG

Let’s apply the CPS transformation to our running example.

(Assume that FAE is extended with multiple parameters.)

/* FAE */

val HALT = x => x;

val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => £(x4, k2)))

};

twice((b, k3) => {
val xb = b * 2;
val x6 x5 + 1;
k3(x6)

}, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT (x3)

»)

This is the CPS version of our running example.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Lambda Lifting 7NPLRG

A lambda lifting transformation lifts nested functions to top-level
functions.

Let's apply the lambda lifting transformation to our running example.

/* FAE */

val HALT = x => x;

val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => f(x4, k2)))

};

twice((b, k3) => {
val xb = b x 2;
val x6 = x5 + 1;
k3(x6)

}, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT (x3)

»)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 17 /35

Lambda Lifting 7NPLRG

Let's apply the lambda lifting transformation to our running example.

/* FAE */

val HALT = x => x;

val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => £(x4, k2)))

};

twice((b, k3) => {
val xb = b *x 2;
val x6 = xb + 1;
k3(x6)

}, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT (x3)

»)

First, let's lift the (b, k3) => ... function to top-level.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

18/35

Lambda Lifting 7NPLRG

Let's apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => £(x4, k2)))
};
val x7 = (b, k3) => {
val x5 = b * 2;
val x6 = xb + 1;
k3(x6)
};
twice(x7, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT (x3)
»)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 19/35

Lambda Lifting 7NPLRG

Let's apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => £(x4, k2)))
};
val x7 = (b, k3) => {
val x5 = b * 2;
val x6 = xb + 1;
k3(x6)
};
twice(x7, x1 => x1(3, x2 => {
val x3 = x2 + 5;
HALT (x3)
»)

Next, let's lift the x2 => ... function to top-level.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 20/35

Lambda Lifting 7NPLRG

Let's apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => £(x4, k2)))
};
val x7 = (b, k3) => {
val xb = b *x 2;
val x6 = xb + 1;
k3(x6)
};
val C1 = x2 => {
val x3 = x2 + 5;
HALT (x3)
};
twice(x7, x1 => x1(3, C1))

We use the name Ck to denote that the function is a continuation.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

21/35

Lambda Lifting 7NPLRG

Let's apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => £(x4, k2)))
};
val x7 = (b, k3) => {
val xb = b *x 2;
val x6 = xb + 1;
k3(x6)
};
val C1 = x2 => {
val x3 = x2 + 5;
HALT (x3)
};
twice(x7, x1 => x1(3, C1))

Let's lift the x1 => ... function to top-level.

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 22/35

Lambda Lifting 7NPLRG

Let's apply the lambda lifting transformation to our running example.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => £(x4, k2)))
};
val x7 = (b, k3) => {
val xb = b *x 2;
val x6 = xb + 1;
k3(x6)
};
val C1 = x2 => {
val x3 = x2 + 5;
HALT (x3)
};
val C2 = x1 => x1(3, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 23/35

Lambda Lifting

’VNPLRG

We cannot lift the (a, k2) => ... and x4 => ... functions because f

is their captured variable from the twice function.

/* FAE */
val HALT = x => x;
val twice = (£, k1) => {
k1((a, k2) => f(a, x4 => (x4, k2)))
};
val x7 = (b, k3) => {
val xb = b * 2;
val x6 = xb + 1;
k3(x6)
};
val C1 = x2 => {
val x3 = x2 + 5;
HALT (x3)
};
val C2 = x1 => x1(3, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations

November 8, 2023

24 /35

Lambda Lifting 7NPLRG

Similarly, k2 in the x4 => ... function is also a captured variable from
the (a, k2) => ... function.
/* FAE */

val HALT = x => x;
val twice = (£, k1) => {
k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {
val xb = b * 2;
val x6 = xb + 1;
k3(x6)
};
val C1 = x2 => {
val x3 = x2 + 5;
HALT (x3)
};
val C2 = x1 => x1(3, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 25/35

Closure Conversion ’VNPLRG

To resolve this problem, we need to perform closure conversion by
passing the captured variables as arguments to the function.

/* FAE */
val HALT = x => x;
val twice = (f, k1) => {
k1((a, k2) => f(a, x4 => f(x4, k2)))
};
val x7 = (b, k3) => {
val xb = b * 2;
val x6 = xb + 1;
k3(x6)
};
val C1 = x2 => {
val x3 = x2 + 5;
HALT (x3)
};
val C2 = x1 => x1(3, C1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Closure Conversion ’VNPLRG

There are diverse closure conversion algorithms, but we skip their details
in this course. If we perform one of them, the result is as follows.

/* FAE */
val HALT = x => x;
val twice = (£, k1) => {
k1((a, f1, k2) => fi(a, f1, k2, (x4, £f2, k4) => f2(x4, 2, k4, k4)))
};
val x7 = (b, £3, k5, k3) => {
val xb = b * 2;
val x6 = xb + 1;
k3(x6, £3, k5)
};
val Cl1 = (x2, f4, k6) => {
val x3 = x2 + 5;
HALT (x3)
};
val C2 = x1 => x1(3, x7, Cl1);
twice(x7, C2)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 27/35

Closure Conversion ’VNPLRG

Finally, we can perform lambda lifting transformation for remaining
functions as follows:

/* FAE x/ val x7 = (b, £3, k5, k3) => {
val HALT = x => x; val x5 = b * 2;
val C3 = (x4, f2, k4) => { val x6 = x5 + 1;
f2(x4, f2, k4, k4) k3(x6, £3, k5)
}; };
val C4 = (a, f1, k2) => { val C1 = (x2, f4, k6) => {
fi(a, f1, k2, C3) val x3 = x2 + 5;
}; HALT (x3)
val twice = (f, k1) => { };
k1(C4) val C2 = x1 => {
}; x1(3, x7, C1)
};
twice(x7, C2)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Closure Conversion ’VNPLRG

Now, our transformed code satisfies the following conditions.
@ Every function is in the top-level scope.
® Every function call is in tail position.
©® Every function always ends with function call.

/* FAE x/ val x7 = (b, £3, k5, k3) => {
val HALT = x => x; val x5 = b * 2;
val C3 = (x4, f2, k4) => { val x6 = x5 + 1;
f2(x4, f2, k4, k4) k3(x6, £3, k5)
}; };
val C4 = (a, f1, k2) => { val C1 = (x2, f4, k6) => {
fi(a, f1, k2, C3) val x3 = x2 + 5;
}; HALT (x3)
val twice = (f, k1) => { };
k1(C4) val C2 = x1 => {
}; x1(3, x7, C1)
};
twice(x7, C2)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Alpha Renaming 7NPLRG

To easily convert the code into the low-level IR, we need to perform
alpha renaming to make every variable name unique and in a consistent
manner (Fk: k-th function, xk: k-th parameter).

/* FAE x/ val F4 = (x1, x2, x3, x4) => {
val HALT = x => x; val x5 = x1 * 2;
val F1 = (x1, x2, x3) => { val x6 = x5 + 1;
x2(x1, x2, x3, x3) x4(x6, x2, x3)
}; };
val F2 = (x1, x2, x3) => { val F5 = (x1, x2, x3) => {
x2(x1, x2, x3, F1) val x4 = x1 + 5;
}; HALT (x4)
val F3 = (x1, x2) => { };
x2(F2) val F6 = x1 => {
}; x1(3, F4, F5)
};
F3(F4, F6)

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023

Transformation to Low-level IR

Now, we can easily convert the code into the low-level IR.

’VNPLRG

F1:
mov
mov
mov
mov
mov
mov
mov
Jjmp

F2:
mov
mov
mov
mov
mov
mov
mov

jmp

x1,
X2,
x3,
al,
a2,
a3,
a4,
x2

x1,
X2,
x3,
al,
a2,
a3,
a4,
x2

al
a2
a3
x1
x2
x3
x3

al
a2
a3
x1
x2
x3
F1

F3:
mov
mov
mov
jmp

F4:
mov
mov
mov
mov
mul
add
mov
mov
mov

jmp

x1,
x2,
al,
x2

x1,
x2,
x3,
x4,
x5,
x6,
al,
a2,
a3,
x4

al
a2
F2

al
a2
a3
ad
x1, 2
x5, 1
x6
x2
x3

F5:
mov
mov
mov
add
mov
jmp

F6:
mov
mov
mov
mov

jmp

START:

mov

mov

jmp
HALT:

x1,
X2,
x3,
x4,
al,

HALT

x1,
al,
a2,
a3,
x1

al,
a2,
F3

al
a2
a3
x1, 5
x4

al
F4
F5

F4
Fé

COSE212 @ Korea University

Lecture 17 — Compiling with Continuations

November 8, 2023

Optimization of Low-level IR

The following lines of code are actually unnecessary:

’VNPLRG

F1:
mov
mov
mov
mov
mov
mov
mov
Jjmp

F2:
mov
mov
mov
mov
mov
mov
mov

jmp

x1,
X2,
x3,
al,
a2,
a3,
a4,
x2

x1,
X2,
x3,
al,
a2,
a3,
a4,
x2

al
a2
a3
x1
x2
x3
x3

al
a2
a3
x1
x2
x3
F1

F3:
mov
mov
mov
jmp

F4:
mov
mov
mov
mov
mul
add
mov
mov
mov

jmp

x1,
x2,
al,
x2

x1,
x2,
x3,
x4,
x5,
x6,
al,
a2,
a3,
x4

al
a2
F2

al
a2
a3
ad
x1, 2
x5, 1
x6
x2
x3

F5:
mov
mov
mov
add
mov
jmp

F6:
mov
mov
mov
mov

jmp

START:

mov

mov

jmp
HALT:

x1,
X2,
x3,
x4,
al,

HALT

x1,
al,
a2,
a3,
x1

al,
a2,
F3

al
a2
a3
x1, 5
x4

al
F4
F5

F4
Fé

COSE212 @ Korea University

Lecture 17 — Compiling with Continuations

November 8, 2023

Optimization of Low-level IR ’NPLRG

After removing all unnecessary lines of code and assign registers based on
the graph coloring algorithm, we get the following code:

/* IR */
F1: Fb:
mov r4, r3 add r1, r1, 5
jmp r2 jmp HALT
F2: F6:
mov r4, F1 mov r4, ril
jmp r2 mov rl, 3
F3: mov r2, F4
mov rl, F2 mov r3, F5
jmp r2 jmp réd
F4: START:
mul rl, rl, 2 mov rl, F4
add r1, r1, 1 mov r2, F6
jmp réd jmp F3
HALT:

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 33/35

Summary ’VPLRG

1. Compilers

2. Compiling with Continuations
Continuation Passing Style
Lambda Lifting
Closure Conversion
Alpha Renaming
Transformation to Low-level IR
Optimization of Low-level IR

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 34 /35

Next Lecture ’VNPLRG

® Type Systems

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 17 — Compiling with Continuations November 8, 2023 35/35

https://plrg.korea.ac.kr

	Compilers
	Compiling with Continuations
	Continuation Passing Style
	Lambda Lifting
	Closure Conversion
	Alpha Renaming
	Transformation to Low-level IR
	Optimization of Low-level IR

