Lecture 2 — Syntax and Semantics (1)

COSE212: Programming Languages

Jihyeok Park

VNPLRG

2023 Fall

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023

Recall

We learn language features of Scala:
e Basic Features
® Built-in Data Types
® Variables
® Functions
® Conditionals
¢ Object-Oriented Programming (OOP)
® (Case Classes
¢ Algebraic Data Types (ADTs)
® Pattern Matching
® Functional Programming (FP)
® First-class Functions
® Recursion
¢ Immutable Collections
Lists
Options and Pairs
Maps and Sets
For Comprehensions

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1)

7VNPLRG

September 11, 2023

2/22

Programming Languages 7NPLRG

Definition (Programming Language)

A programming language is defined by
e Syntax: a grammar that defines the structure of programs

® Semantics: a set of rules that defines the meaning of programs

We will learn how to define the syntax and semantics of a programming
language.

We define a programming language for arithmetic expressions (AE) as
the running example.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 3/22

Arithmetic Expressions ’VPLRG
Let's consider the arithmetic expressions (AE) supporting addition and
multiplication of integers:

® 4 + 2

® 1 x 24

e 42 + 4 x 10

e (1 +2) % (2+3)

There are infinitely many AEs.
How to define all the valid AEs (syntax)?

How to define the expected result of each AE (semantics)?

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 4/22

Contents ’VNPLRG

1. Syntax
Backus-Naur Form (BNF)
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax

2. Operational Semantics
Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 5/22

Contents ’VNPLRG

1. Syntax
Backus-Naur Form (BNF)
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 6/22

Backus-Naur Form (BNF) ’VNPLRG

Backus-Naur Form (BNF) is a notation for context-free grammar:

¢ A nonterminal has a name and a set of production rules consisting
of sequences of terminals and nonterminals.

e A terminal is a symbol that appears in the final output.

For example, a nonterminal <number> produces all strings representing
integers (allowing leading zeros) as follows:

<digit> co= Q" | nqn | non I ngn | ngn

ngn | ngn | nn I ngn | ngn
<nat> 1:= <digit> | <digit> <nat>
<number> ::= <nat> | "-" <nat>

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 7/22

Concrete Syntax ’VPLRG

Let’s define the concrete syntax of AE in BNF:

<expr> ::= <number>

| <expr> "+" <expr>
| <expr> "*" <expr>
|

n (n <expr> u) n

It is the surface-level representation of programs with all the syntactic
details to decide whether a given string is a valid AE or not.

For example, (1+2) %3 is a valid AE:

<expr> = <expr>*<expr> = (<expr>)*<expr>
= (<expr>+<expr>)*<expr> = (<number>+<expr>)*<expr>
= (1+<expr>)*<expr> = (1+<number>)*<expr>
= (1+2) *<expr> = (1+2) *<number>
= (1+2)%3

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 8/22

Concrete Syntax ’VPLRG

Let’s define the concrete syntax of AE in BNF:

<expr> ::= <number>

| <expr> "+" <expr>
| <expr> "x" <expr>
|

u(u <expr> u)u

We need associativity and precedence rules to disambiguate.

e v and "x" are left-associative.

"1+ 2+3+4+56" == "((((1+2)+3)+4) +5)"
"1 %2 % 3 %4 % 5" "G * 2) * 3) x 4) x B)"

e x" has higher precedence than "+".

"1+ 2% 3+4*5" == "((1+(2%3))+(4=*5)"

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 9/22

Abstract Syntax ’VPLRG
Let's define the abstract syntax of AE in BNF:

e n (Num)

| e+e (Add)
| exe (Mul)

It captures only the essential structure of AE rather than the details.

The abstract syntax trees (ASTs) of (1+2)*3 and 1+2x3 are as follows:

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 10 /22

Concrete vs. Abstract Syntax

7VNPLRG

While concrete syntax is the surface-level representation of programs,
abstract syntax is the essential representation of programs.

There might be multiple concrete syntax for the same abstract syntax:

<expr> ::

<number>

<expr> "+" <expr>
<expr> "*" <expr>
u(u <expr> n)u

<expr> ::

<number>
u(u ngn <expr> <expr> u)n
" (u Mg <expr> <expr> n) "

<expr> ::

<number>
"ADD[" <expr> ";" <expr> "]"
"MUL[" <expr> u;n <expr> n]u

COSE212 @ Korea University

Lecture 2 — Syntax and Semantics (1)

= n (Num)
| e+e (Add)
| exe (Mul)

September 11, 2023 11/22

Concrete vs. Abstract Syntax ’VPLRG

While concrete syntax is the surface-level representation of programs,
abstract syntax is the essential representation of programs.

There might be multiple concrete syntax for the same abstract syntax:

(1 +2) 3

(x (+ 12) 3) = H I

(i) ())
MUL[ADD[1; 2]; 3] Q e

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 12 /22

Contents ’VNPLRG

2. Operational Semantics
Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 13 /22

Semantics ’NPLRG

There exist diverse ways to define semantics of programming languages.

e Axiomatic semantics defines the meaning of a program by
specifying the properties that hold after its execution.

{x=nANy=m} z:=x+y {z=n+m}

¢ Denotational semantics defines the meaning of a program by
mapping it to a mathematical object that represents its meaning.

[e + €] = [e] + [e]

e Operational semantics defines the meaning of a program by
specifying how it executes on a machine.

|—61:>n1 |—62:>n2
Hel+e = n+nm

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 14 /22

Operational Semantics ’NPLRG

In this course, we will focus on operational semantics, and there are two
different representative styles:

¢ Big-Step Operational (Natural) Semantics defines the meaning of
a program by specifying how it executes on a machine in one big step.

Fe=m Fe=nm
Feir+e=n+n

* Small-Step Operational (Reduction) Semantics defines the
meaning of a program by specifying how it executes on a machine
step-by-step.

€1 — ei

e1+ e — e+ e

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 15 /22

Inference Rules ’VNPLRG

Operational semantics is defined by inference rules.
An inference rule consists of multiple premises and one conclusion:

premise; premise, e premise,

conclusion
meaning that “if all the premises are true, then the conclusion is true”:

premise; A\ premise, A - - - A\ premise, = conclusion

For example,
A — B B = C

A= C
means that “if A implies B, and B implies C, then A implies C".

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 16 /22

Big-Step Operational (Natural) Semantics ’VPLRG

It means that “the expression e evaluates to the number n”.

Let’s define the big-step operational (natural) semantics of AE:

NuM —
Fn=n
e — n (Num) AbD |—61:>n1 |‘€2:>I72
| e+e (Add) — Fer+e=n+nm
| exe (Mul)
|—61:>n1 |‘€2:>I72
MuL

Fexe=n xn

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 17 /22

Big-Step Operational (Natural) Semantics ’VPLRG

Fei=m Fe=m
NuM

Fer=>m Fe=m
ADpD

UL
Fn=n

Fer+e=nm+nm Fe Xe = nmXxn

Let's prove + (14 2) x 3 = 9 by drawing a derivation tree:

Num Num
Fl1=1 F2=2
ApD Num
F1+2=3 F3=3
MuL

F(1+2)x3=9

Let's prove -1+ 2 x 3 = 7 by drawing a derivation tree:

F1+2x3=

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 18 /22

Small-Step Operational (Reduction) Semantics ~ AVPLRG

€ — €1

It means that “ey is reduced to e; as the result of one-step evaluation”.
Let's define the small-step operational (reduction) semantics of AE:

e1—>e1 61—>ei

e1—|—e2—>e1—i—eg e1><e2—>e1><e2

w=n (Num) e — & & — €
| e+e (Add) =
| exe (Mul)

n1—|—e2—>n1+e§ n1><e2—>n1><e§

n—+n—n-+n n Xn—nxn

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 19 /22

Small-Step Operational (Reduction) Semantics ~ AVPLRG

er — e & — e

ate—e+e m+e—nm+e m4n—nm+m
e — €] & — e

e xXe—e Xe n X e — n X e noX nm— Ny X m

Let's prove (14 2) x 3 —* 9 by showing a reduction sequence:

(Note that —* denotes the reflexive-transitive closure of —.)
(14+2)x3 — 3x3 — 9
Let's prove 1 4+ 2 x 3 —=* 7 by showing a reduction sequence:

1+2x%x3 —

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 20/22

Summary ’VPLRG

1. Syntax
Backus-Naur Form (BNF)
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax

2. Operational Semantics
Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 21/22

Next Lecture ’VNPLRG

® Syntax and Semantics (2)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 11, 2023 22/22

https://plrg.korea.ac.kr

	Syntax
	Backus-Naur Form (BNF)
	Concrete Syntax
	Abstract Syntax
	Concrete vs. Abstract Syntax

	Operational Semantics
	Inference Rules
	Big-Step Operational (Natural) Semantics
	Small-Step Operational (Reduction) Semantics

