Lecture 2 - Syntax and Semantics (1)
 COSE212: Programming Languages

Jihyeok Park

A)PLRG

2023 Fall

Recall

We learn language features of Scala:

- Basic Features
- Built-in Data Types
- Variables
- Functions
- Conditionals
- Object-Oriented Programming (OOP)
- Case Classes
- Algebraic Data Types (ADTs)
- Pattern Matching
- Functional Programming (FP)
- First-class Functions
- Recursion
- Immutable Collections
- Lists
- Options and Pairs
- Maps and Sets
- For Comprehensions

Programming Languages

Definition (Programming Language)

A programming language is defined by

- Syntax: a grammar that defines the structure of programs
- Semantics: a set of rules that defines the meaning of programs

We will learn how to define the syntax and semantics of a programming language.

We define a programming language for arithmetic expressions (AE) as the running example.

Arithmetic Expressions

Let's consider the arithmetic expressions (AE) supporting addition and multiplication of integers:

- $4+2$
- 1 * 24
- $-42+4 * 10$
- $(1+2) *(2+3)$

There are infinitely many AEs.

Arithmetic Expressions

Let's consider the arithmetic expressions (AE) supporting addition and multiplication of integers:

- $4+2$
- 1 * 24
- $-42+4 * 10$
- $(1+2) *(2+3)$

There are infinitely many AEs.
How to define all the valid AEs (syntax)?

Arithmetic Expressions

Let's consider the arithmetic expressions (AE) supporting addition and multiplication of integers:

- $4+2$
- 1 * 24
- $-42+4$ * 10
- $(1+2) *(2+3)$
- . .

There are infinitely many AEs.
How to define all the valid AEs (syntax)?
How to define the expected result of each AE (semantics)?

Contents

1. Syntax

Backus-Naur Form (BNF)
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax
2. Operational Semantics

Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

Contents

1. Syntax

Backus-Naur Form (BNF)
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax
2. Operational Semantics

Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

Backus-Naur Form (BNF)

Backus-Naur Form (BNF) is a notation for context-free grammar:

- A nonterminal has a name and a set of production rules consisting of sequences of terminals and nonterminals.
- A terminal is a symbol that appears in the final output.

Backus-Naur Form (BNF)

Backus-Naur Form (BNF) is a notation for context-free grammar:

- A nonterminal has a name and a set of production rules consisting of sequences of terminals and nonterminals.
- A terminal is a symbol that appears in the final output.

For example, a nonterminal <number> produces all strings representing integers (allowing leading zeros) as follows:

```
<digit> ::= "0" | "1" | "2" | "3" | "4"
<nat> ::= <digit> | <digit> <nat>
<number> ::= <nat> | "-" <nat>
```


Concrete Syntax

Let's define the concrete syntax of AE in BNF:

```
<expr> ::= <number>
    <expr> "+" <expr>
    <expr> "*" <expr>
    "(" <expr> ")"
```

It is the surface-level representation of programs with all the syntactic details to decide whether a given string is a valid AE or not.

Concrete Syntax

Let's define the concrete syntax of $A E$ in BNF:

$$
\begin{aligned}
& \text { <expr> : }:=\text { <number> } \\
& \mid \text { <expr> "+" <expr> } \\
& \mid \text { <expr> "*" <expr> } \\
& \mid "(" \text { <expr> ")" }
\end{aligned}
$$

It is the surface-level representation of programs with all the syntactic details to decide whether a given string is a valid AE or not.

For example, $(1+2) * 3$ is a valid AE :

$$
\begin{array}{rlrl}
<\text { expr }> & \Rightarrow \text { eexpr>*<expr> } & & \Rightarrow(<\text { expr }>) *<\text { expr }> \\
& \Rightarrow(\text { eexpr>+<expr>)*<expr> } & \Rightarrow(<\text { number>+<expr>)*<expr> } \\
& \Rightarrow(1+<e \operatorname{expr>)*<expr>} & & \Rightarrow(1+<\text { number>)*<expr> } \\
& \Rightarrow(1+2) *<\text { expr } & & \Rightarrow(1+2) *<\text { number }> \\
& \Rightarrow(1+2) * 3 & &
\end{array}
$$

Concrete Syntax

Let's define the concrete syntax of $A E$ in BNF:

$$
\begin{aligned}
\text { <expr> : : } & \text { <number> } \\
& \mid \text { <expr> "+" <expr> } \\
& \mid \text { <expr> "*" <expr> } \\
& \mid "(" \text { <expr> ")" }
\end{aligned}
$$

We need associativity and precedence rules to disambiguate.

- "+" and "*" are left-associative.

$$
\begin{aligned}
& " 1+2+3+4+5 "=="((((1+2)+3)+4)+5) " \\
& " 1 * 2 * 3 * 4 * 5 "=="(((1+2) * 3) * 4) * 5) "
\end{aligned}
$$

- "*" has higher precedence than "+".

$$
" 1+2 * 3+4 * 5 "==\quad "((1+(2 * 3))+(4 * 5)) "
$$

Abstract Syntax

Let's define the abstract syntax of $A E$ in BNF:

e		(Num)
	$e+$	(Add)
	$e \times$	(Mul)

Abstract Syntax

Let's define the abstract syntax of $A E$ in BNF:

| $e::=$ | n | (Num) |
| ---: | :--- | :--- | :--- |
| | $\|$ $e+e$
 (Add)
 $e \times e$ | (Mul) |

It captures only the essential structure of AE rather than the details.

Abstract Syntax

Let's define the abstract syntax of AE in BNF:

$$
\begin{array}{rll}
e:: & = & n \\
& & \text { (Num) } \\
& e+e & \text { (Add) } \\
& e \times e & \text { (Mul) }
\end{array}
$$

It captures only the essential structure of AE rather than the details.
The abstract syntax trees (ASTs) of $(1+2) * 3$ and $1+2 * 3$ are as follows:

Concrete vs. Abstract Syntax

While concrete syntax is the surface-level representation of programs, abstract syntax is the essential representation of programs.

Concrete vs. Abstract Syntax

While concrete syntax is the surface-level representation of programs, abstract syntax is the essential representation of programs.

There might be multiple concrete syntax for the same abstract syntax:

```
<expr> ::= <number>
    <expr> "+" <expr>
    | <expr> "*" <expr>
    "(" <expr> ")"
```

```
<expr> ::= <number>
    | "(" "+" <expr> <expr> ")"
    | "(" "*" <expr> <expr> ")"
```

$e \quad:=$	n	(Num)
	$\|$(Add) $e \times e$ (Mul)	

```
<expr> ::= <number>
    | "ADD[" <expr> ";" <expr> "]"
    | "MUL[" <expr> ";" <expr> "]"
```


Concrete vs. Abstract Syntax

While concrete syntax is the surface-level representation of programs, abstract syntax is the essential representation of programs.

There might be multiple concrete syntax for the same abstract syntax:

$$
\left.\begin{array}{l}
(1+2) * 3 \\
(*(+12) 3
\end{array}\right)
$$

Contents

1. Syntax

Backus-Naur Form (BNF)
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax
2. Operational Semantics

Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

Semantics

There exist diverse ways to define semantics of programming languages.

- Axiomatic semantics defines the meaning of a program by specifying the properties that hold after its execution.

$$
\{x=n \wedge y=m\} \quad z:=x+y \quad\{z=n+m\}
$$

- Denotational semantics defines the meaning of a program by mapping it to a mathematical object that represents its meaning.

$$
\llbracket e+e \rrbracket=\llbracket e \rrbracket+\llbracket e \rrbracket
$$

- Operational semantics defines the meaning of a program by specifying how it executes on a machine.

$$
\frac{\vdash e_{1} \Rightarrow n_{1} \quad \vdash e_{2} \Rightarrow n_{2}}{\vdash e_{1}+e_{2} \Rightarrow n_{1}+n_{2}}
$$

Operational Semantics

In this course, we will focus on operational semantics, and there are two different representative styles:

- Big-Step Operational (Natural) Semantics defines the meaning of a program by specifying how it executes on a machine in one big step.

$$
\frac{\vdash e_{1} \Rightarrow n_{1} \quad \vdash e_{2} \Rightarrow n_{2}}{\vdash e_{1}+e_{2} \Rightarrow n_{1}+n_{2}}
$$

- Small-Step Operational (Reduction) Semantics defines the meaning of a program by specifying how it executes on a machine step-by-step.

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}}
$$

Inference Rules

Operational semantics is defined by inference rules.

Inference Rules

Operational semantics is defined by inference rules.
An inference rule consists of multiple premises and one conclusion:

Inference Rules

Operational semantics is defined by inference rules.
An inference rule consists of multiple premises and one conclusion:

meaning that "if all the premises are true, then the conclusion is true":
premise $_{1} \wedge$ premise $_{2} \wedge \cdots \wedge$ premise $_{n} \Longrightarrow$ conclusion

Inference Rules

Operational semantics is defined by inference rules.
An inference rule consists of multiple premises and one conclusion:

meaning that "if all the premises are true, then the conclusion is true":

$$
\text { premise }_{1} \wedge \text { premise }_{2} \wedge \cdots \wedge \text { premise }_{n} \Longrightarrow \text { conclusion }
$$

For example,

means that "if A implies B, and B implies C, then A implies C ".

Big-Step Operational (Natural) Semantics

$$
\vdash e \Rightarrow n
$$

It means that "the expression e evaluates to the number n".

Big-Step Operational (Natural) Semantics

$$
\vdash e \Rightarrow n
$$

It means that "the expression e evaluates to the number n ".
Let's define the big-step operational (natural) semantics of AE:

$$
\begin{aligned}
& e \\
&:=\begin{array}{ll}
n & \text { (Num) } \\
e+e & \text { (Add) } \\
e \times e & \text { (Mul) }
\end{array} \\
& \text { MuL } \frac{\text { ADD } \frac{\vdash e_{1} \Rightarrow n_{1} \Rightarrow e_{1} \Rightarrow n_{2}}{\vdash e_{1}+e_{2} \Rightarrow n_{1}+n_{2}}}{\vdash e_{1} \times e_{2} \Rightarrow n_{1} \times n_{2}}
\end{aligned}
$$

Big-Step Operational (Natural) Semantics

Let's prove $\vdash(1+2) \times 3 \Rightarrow 9$ by drawing a derivation tree:

Big-Step Operational (Natural) Semantics

$\operatorname{NUM} \frac{\text { ADD } \frac{\vdash e_{1} \Rightarrow n_{1} \quad \vdash e_{2} \Rightarrow n_{2}}{\vdash n \Rightarrow n} \quad \text { MUL } \frac{\vdash e_{1} \Rightarrow e_{2} \Rightarrow n_{1} \quad \vdash e_{2} \Rightarrow n_{2}}{\vdash n_{1} \times e_{2} \Rightarrow n_{1} \times n_{2}}}{\vdash e_{1}}$
Let's prove $\vdash(1+2) \times 3 \Rightarrow 9$ by drawing a derivation tree:

$$
\begin{aligned}
& \operatorname{NUM} \frac{\overline{\vdash 1 \Rightarrow 1} \text { NUM } \overline{\vdash 2 \Rightarrow 2}}{\vdash 1+2 \Rightarrow 3} \text { NUM } \overline{\vdash 3 \Rightarrow 3} \\
& \operatorname{MUL} \frac{\vdash(1+2) \times 3 \Rightarrow 9}{\vdash(1+2}
\end{aligned}
$$

Big-Step Operational (Natural) Semantics

$\operatorname{NUM} \frac{\text { ADD } \frac{\vdash e_{1} \Rightarrow n_{1} \quad \vdash e_{2} \Rightarrow n_{2}}{\vdash n \Rightarrow n} \quad \text { MUL } \frac{\vdash e_{1} \Rightarrow e_{1} \Rightarrow n_{1} \quad \vdash e_{2} \Rightarrow n_{2}}{\vdash n_{2}}+e_{1} \times e_{2} \Rightarrow n_{1} \times n_{2}}{\vdash n}$
Let's prove $\vdash(1+2) \times 3 \Rightarrow 9$ by drawing a derivation tree:

$$
\begin{aligned}
& \text { NUM } \overline{\vdash 1 \Rightarrow 1} \text { NUM } \overline{\vdash 2 \Rightarrow 2} \\
& \operatorname{AdD} \frac{\text { NUM } \overline{\vdash 1+2 \Rightarrow 3}}{\vdash(1+2) \times 3 \Rightarrow 9}
\end{aligned}
$$

Let's prove $\vdash 1+2 \times 3 \Rightarrow 7$ by drawing a derivation tree:

$$
\vdash 1+2 \times 3 \Rightarrow
$$

Small-Step Operational (Reduction) Semantics

$$
e_{0} \rightarrow e_{1}
$$

It means that " e_{0} is reduced to e_{1} as the result of one-step evaluation".

Small-Step Operational (Reduction) Semantics

$$
e_{0} \rightarrow e_{1}
$$

It means that " e_{0} is reduced to e_{1} as the result of one-step evaluation".
Let's define the small-step operational (reduction) semantics of $A E$:

$$
\begin{aligned}
& \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} \times e_{2} \rightarrow e_{1}^{\prime} \times e_{2}} \\
& \begin{array}{rll}
e & \left.:=\begin{array}{cc}
n & (\text { Num }) \\
e+e & \text { (Add) } \\
e \times e & \text { (Mul) }
\end{array} \Longrightarrow \frac{e_{2} \rightarrow e_{2}^{\prime}}{n_{1}+e_{2} \rightarrow n_{1}+e_{2}^{\prime}} \quad \begin{array}{c}
e_{2} \rightarrow e_{2}^{\prime} \\
n_{1} \times e_{2} \rightarrow n_{1} \times e_{2}^{\prime}
\end{array}\right]
\end{array} \\
& n_{1}+n_{2} \rightarrow n_{1}+n_{2} \\
& n_{1} \times n_{2} \rightarrow n_{1} \times n_{2}
\end{aligned}
$$

Small-Step Operational (Reduction) Semantics

$$
\begin{array}{cc}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}} & \frac{e_{2} \rightarrow e_{2}^{\prime}}{n_{1}+e_{2} \rightarrow n_{1}+e_{2}^{\prime}} \\
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} \times e_{2} \rightarrow e_{1}^{\prime} \times e_{2}} & \frac{e_{2} \rightarrow e_{2}^{\prime}}{n_{1}+n_{2} \rightarrow n_{1}+n_{2}} \\
n_{1} \times e_{2} \rightarrow n_{1} \times e_{2}^{\prime} & \frac{}{n_{1} \times n_{2} \rightarrow n_{1} \times n_{2}}
\end{array}
$$

Let's prove $(1+2) \times 3 \rightarrow^{*} 9$ by showing a reduction sequence:
(Note that \rightarrow^{*} denotes the reflexive-transitive closure of \rightarrow.)

Small-Step Operational (Reduction) Semantics

$$
\begin{array}{cc}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}} & \frac{e_{2} \rightarrow e_{2}^{\prime}}{n_{1}+e_{2} \rightarrow n_{1}+e_{2}^{\prime}} \\
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} \times e_{2} \rightarrow e_{1}^{\prime} \times e_{2}} & \frac{e_{2} \rightarrow e_{2}^{\prime}}{n_{1}+n_{2} \rightarrow n_{1}+n_{2}} \\
n_{1} \times e_{2} \rightarrow n_{1} \times e_{2}^{\prime} & \frac{}{n_{1} \times n_{2} \rightarrow n_{1} \times n_{2}}
\end{array}
$$

Let's prove $(1+2) \times 3 \rightarrow^{*} 9$ by showing a reduction sequence:
(Note that \rightarrow^{*} denotes the reflexive-transitive closure of \rightarrow.)

$$
(1+2) \times 3 \quad \rightarrow \quad 3 \times 3 \quad \rightarrow \quad 9
$$

Small-Step Operational (Reduction) Semantics

$$
\begin{array}{cc}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}} & \frac{e_{2} \rightarrow e_{2}^{\prime}}{n_{1}+e_{2} \rightarrow n_{1}+e_{2}^{\prime}} \\
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} \times e_{2} \rightarrow e_{1}^{\prime} \times e_{2}} & \frac{e_{2} \rightarrow e_{2}^{\prime}}{n_{1}+n_{2} \rightarrow n_{1}+n_{2}} \\
n_{1} \times e_{2} \rightarrow n_{1} \times e_{2}^{\prime} & \frac{}{n_{1} \times n_{2} \rightarrow n_{1} \times n_{2}}
\end{array}
$$

Let's prove $(1+2) \times 3 \rightarrow^{*} 9$ by showing a reduction sequence:
(Note that \rightarrow^{*} denotes the reflexive-transitive closure of \rightarrow.)

$$
(1+2) \times 3 \quad \rightarrow \quad 3 \times 3 \quad \rightarrow \quad 9
$$

Let's prove $1+2 \times 3 \rightarrow^{*} 7$ by showing a reduction sequence:

$$
1+2 \times 3 \quad \rightarrow
$$

Summary

1. Syntax

Backus-Naur Form (BNF)
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax
2. Operational Semantics

Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

Next Lecture

- Syntax and Semantics (2)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

