Lecture 8 - Lambda Calculus COSE212: Programming Languages

Jihyeok Park

A)PLRG

2023 Fall

- FVAE - VAE with First-Class Functions
- First-Class Functions
- Concrete and Abstract Syntax
- Interpreter and Natural Semantics with Closures
- Static and Dynamic Scoping
- FVAE - VAE with First-Class Functions
- First-Class Functions
- Concrete and Abstract Syntax
- Interpreter and Natural Semantics with Closures
- Static and Dynamic Scoping
- In this lecture, we will learn syntactic sugar and lambda calculus

Contents

1. Syntactic Sugar

No More val
FAE - Removing val from FVAE
Syntactic Sugar and Desugaring
2. Lambda Calculus

Definition
Church Encodings
Church-Turing Thesis

Contents

1. Syntactic Sugar

No More val
FAE - Removing val from FVAE Syntactic Sugar and Desugaring
2. Lambda Calculus

Definition
Church Encodings
Church-Turing Thesis

No More val

/* FVAE */
val $\mathrm{x}=1 ; \mathrm{x}+2$
It assigns a value 1 to the variable x, and then evaluates the body expression $x+2$ with the environment $[x \mapsto 1]$.

No More val

/* FVAE */
val $\mathrm{x}=1 ; \mathrm{x}+2$
It assigns a value 1 to the variable x, and then evaluates the body expression $x+2$ with the environment $[x \mapsto 1]$.

It is same as:

```
/* FVAE */
(x => x + 2)(1)
```

It assigns a value (argument) 1 to the parameter x, and then evaluates the body expression $x+2$ with the environment $[x \mapsto 1]$.

No More val
In general, the following two expressions are equivalent:

$$
\text { val } x=e ; e^{\prime} \quad \text { is equivalent to } \quad\left(\lambda x . e^{\prime}\right)(e)
$$

Why?

No More val

In general, the following two expressions are equivalent:

$$
\operatorname{val} x=e ; e^{\prime} \quad \text { is equivalent to } \quad\left(\lambda x \cdot e^{\prime}\right)(e)
$$

Why?
The following inference rule for the semantics of val $x=e ; e^{\prime}$:

$$
\mathrm{VAL} \frac{\sigma \vdash e \Rightarrow v \quad \sigma[x \mapsto v] \vdash e^{\prime} \Rightarrow v^{\prime}}{\sigma \vdash \operatorname{val} x=e ; e^{\prime} \Rightarrow v^{\prime}}
$$

is equivalent to the following inference rule for the semantics of $\left(\lambda x . e^{\prime}\right)(e)$:

$$
\begin{aligned}
& \text { Fun } \overline{\sigma \vdash \lambda x \cdot e^{\prime} \Rightarrow\left\langle\lambda x \cdot e^{\prime}, \sigma\right\rangle} \quad \sigma \vdash e \Rightarrow v \quad \sigma[x \mapsto v] \vdash e^{\prime} \Rightarrow v^{\prime} \\
& \operatorname{App} \frac{\sigma \vdash\left(\lambda x \cdot e^{\prime}\right)(e) \Rightarrow v^{\prime}}{}
\end{aligned}
$$

FAE - Removing val from FVAE

Then, we can define a smaller language FAE

Expressions $\mathbb{E} \ni e:$	$=$	n	(Num)
	$\mid e+e$	(Add)	
	$\mid e \times e$	(Mul)	
	$\mid x$	(Id)	
	$\mid \lambda x . e$	(Fun)	
	$\mid e(e)$	(App)	

by removing val from FVAE using the following equivalence:

$$
\operatorname{val} x=e ; e^{\prime} \quad \text { is equivalent to } \quad\left(\lambda x \cdot e^{\prime}\right)(e)
$$

Syntactic Sugar and Desugaring

Definition (Syntactic Sugar)

Syntactic elements that can be expressed in terms of other syntactic elements are called syntactic sugar.

Syntactic Sugar and Desugaring

Definition (Syntactic Sugar)

Syntactic elements that can be expressed in terms of other syntactic elements are called syntactic sugar.

Definition (Desugaring)

Desugaring is a translation for removing syntactic sugar.

$$
\mathcal{D} \llbracket-\rrbracket: \mathbb{E} \rightarrow \mathbb{E}
$$

Syntactic Sugar and Desugaring

Definition (Syntactic Sugar)

Syntactic elements that can be expressed in terms of other syntactic elements are called syntactic sugar.

Definition (Desugaring)

Desugaring is a translation for removing syntactic sugar.

$$
\mathcal{D} \llbracket-\rrbracket: \mathbb{E} \rightarrow \mathbb{E}
$$

$\mathcal{D} \llbracket n \rrbracket$	$=n$	$\mathcal{D} \llbracket \mathrm{val} x=e ; e^{\prime} \rrbracket$	$=\left(\lambda x . \mathcal{D} \llbracket e^{\prime} \rrbracket\right)(\mathcal{D} \llbracket e \rrbracket)$
$\mathcal{D} \llbracket e+e^{\prime} \rrbracket$	$=\mathcal{D} \llbracket e \rrbracket+\mathcal{D} \llbracket e^{\prime} \rrbracket$	$\mathcal{D} \llbracket x \rrbracket$	
$\mathcal{D} \llbracket e \times e^{\prime} \rrbracket$	$=\mathcal{D} \llbracket e \rrbracket \times \mathcal{D} \llbracket e^{\prime} \rrbracket$	$\mathcal{D} \llbracket \lambda x . e \rrbracket$	
		$=\lambda x \cdot \mathcal{D} \llbracket e \rrbracket$	
		$\mathcal{D} \llbracket e\left(e^{\prime}\right) \rrbracket$	
		$=\mathcal{D} \llbracket e \rrbracket\left(\mathcal{D} \llbracket e^{\prime} \rrbracket\right)$	

Syntactic Sugar and Desugaring

Definition (Syntactic Sugar)

Syntactic elements that can be expressed in terms of other syntactic elements are called syntactic sugar.

Definition (Desugaring)

Desugaring is a translation for removing syntactic sugar.

$$
\mathcal{D} \llbracket-\rrbracket: \mathbb{E} \rightarrow \mathbb{E}
$$

$$
\begin{array}{llll}
\mathcal{D} \llbracket n \rrbracket & =n & \mathcal{D} \llbracket \operatorname{val} x=e ; e^{\prime} \rrbracket & =\left(\lambda x \cdot \mathcal{D} \llbracket e^{\prime} \rrbracket\right)(\mathcal{D} \llbracket e \rrbracket) \\
\mathcal{D} \llbracket e+e^{\prime} \rrbracket=\mathcal{D} \llbracket e \rrbracket+\mathcal{D} \llbracket e^{\prime} \rrbracket & \mathcal{D} \llbracket x \rrbracket & =x \\
\mathcal{D} \llbracket e \times e^{\prime} \rrbracket & =\mathcal{D} \llbracket e \rrbracket \times \mathcal{D} \llbracket e^{\prime} \rrbracket & \mathcal{D} \llbracket \lambda x . e \rrbracket & \\
& & \mathcal{D} \llbracket e\left(e^{\prime}\right) \rrbracket & \\
& & =\mathcal{D} \llbracket e \rrbracket\left(\mathcal{D} \llbracket \llbracket e^{\prime} \rrbracket\right)
\end{array}
$$

For example,

$$
\mathcal{D} \llbracket \operatorname{val} x=42 ; \text { val } y=x+1 ; y+2 \rrbracket=(\lambda x \cdot(\lambda y \cdot y+2)(x+1))(42)
$$

Syntactic Sugar and Desugaring

We can also implement desugaring in Scala:

```
def desugar(expr: Expr): Expr = expr match
    case Num(n) => Num(n)
    case Add(l, r) => Add(desugar(l), desugar(r))
    case Mul(l, r) => Mul(desugar(l), desugar(r))
    case Val(x, i, b) => App(Fun(x, desugar(b)), desugar(i))
    case Id(x) => Id(x)
    case Fun(p, b) => Fun(p, desugar(b))
    case App(f, e) => App(desugar(f), desugar(e))
```

Note that we need to recursively desugar all sub-expressions of the given expression even if they are not syntactic sugars.

Syntactic Sugar and Desugaring

We can also implement desugaring in Scala:

```
def desugar(expr: Expr): Expr = expr match
    case Num(n) => Num(n)
    case Add(l, r) => Add(desugar(l), desugar(r))
    case Mul(l, r) => Mul(desugar(l), desugar(r))
    case Val(x, i, b) => App(Fun(x, desugar(b)), desugar(i))
    case Id(x) => Id(x)
    case Fun(p, b) => Fun(p, desugar(b))
    case App(f, e) => App(desugar(f), desugar(e))
```

Note that we need to recursively desugar all sub-expressions of the given expression even if they are not syntactic sugars.

Then, we can desugar the example FVAE expression as follows:

```
val e1: Expr = Expr("val x = 42; val y = x + 1; y + 2")
val e2: Expr = Expr("(x => (y => y + 2) (x + 1))(42)")
desugar(e1) == e2
```


Syntactic Sugar and Desugaring

Most programming languages have syntactic sugar:

- Scala

$$
\text { for (x <- list) yield x * } \equiv \text { list.map (x => x * 2) }
$$

- C++

$$
\operatorname{arr}[i]+\text { obj->field } \equiv *(\operatorname{arr}+i)+(* o b j) . f i e l d
$$

- JavaScript

$$
\mathrm{x}+=\mathrm{y} ; \mathrm{x} *=\mathrm{y} ; \quad \equiv \mathrm{x}=\mathrm{x}+\mathrm{y} ; \mathrm{x}=\mathrm{x} * \mathrm{y} ;
$$

- Haskell

$$
\text { do } x<-\mathrm{f} ; \mathrm{g} \mathrm{x} \equiv \mathrm{f} \gg=(\backslash \mathrm{x}->\mathrm{g} \mathrm{x})
$$

Contents

1. Syntactic Sugar

No More val
FAE - Removing val from FVAE Syntactic Sugar and Desugaring
2. Lambda Calculus

Definition
Church Encodings
Church-Turing Thesis

Lambda Calculus

What is the minimal language that can express all the syntactic elements of FVAE?

Lambda Calculus

What is the minimal language that can express all the syntactic elements of FVAE? Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables, 2) functions, and 3) applications:

Lambda Calculus

What is the minimal language that can express all the syntactic elements of FVAE? Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables, 2) functions, and 3) applications:

We already showed that the variable definition can be desugared to a combination of a function definition and an application:

$$
\mathcal{D} \llbracket \operatorname{val} x=e ; e^{\prime} \rrbracket=\left(\lambda x . \mathcal{D} \llbracket e^{\prime} \rrbracket\right)(\mathcal{D} \llbracket e \rrbracket)
$$

Lambda Calculus

What is the minimal language that can express all the syntactic elements of FVAE? Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables, 2) functions, and 3) applications:

We already showed that the variable definition can be desugared to a combination of a function definition and an application:

$$
\mathcal{D} \llbracket \operatorname{val} x=e ; e^{\prime} \rrbracket=\left(\lambda x . \mathcal{D} \llbracket e^{\prime} \rrbracket\right)(\mathcal{D} \llbracket e \rrbracket)
$$

Then, how can we desugar other syntactic elements of FVAE?

Lambda Calculus

What is the minimal language that can express all the syntactic elements of FVAE? Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables, 2) functions, and 3) applications:

We already showed that the variable definition can be desugared to a combination of a function definition and an application:

$$
\mathcal{D} \llbracket \operatorname{val} x=e ; e^{\prime} \rrbracket=\left(\lambda x . \mathcal{D} \llbracket e^{\prime} \rrbracket\right)(\mathcal{D} \llbracket e \rrbracket)
$$

Then, how can we desugar other syntactic elements of FVAE?
Let's learn the Church encodings!

Church encodings are a way to encode data and operations in the lambda calculus (LC).

Church Encodings - Church Numerals

Church encodings are a way to encode data and operations in the lambda calculus (LC).

For example, Church numerals are a way to encode natural numbers in the lambda calculus (LC).

Church Encodings - Church Numerals

Church encodings are a way to encode data and operations in the lambda calculus (LC).

For example, Church numerals are a way to encode natural numbers in the lambda calculus (LC).

The key idea is to encode a natural number n as a function that takes another function f and an argument x and applies f to $x n$ times:

$$
\begin{aligned}
& \mathcal{D} \llbracket 0 \rrbracket=\lambda f . \lambda x \cdot x \\
& \mathcal{D} \llbracket 1 \rrbracket=\lambda f . \lambda x \cdot f(x) \\
& \mathcal{D} \llbracket 2 \rrbracket=\lambda f . \lambda x \cdot f(f(x)) \\
& \mathcal{D} \llbracket 3 \rrbracket=\lambda f . \lambda x \cdot f(f(f(x)))
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{D} \llbracket e_{0}+e_{1} \rrbracket=\lambda f \cdot \lambda x \cdot \mathcal{D} \llbracket e_{0} \rrbracket(f)\left(\mathcal{D} \llbracket e_{1} \rrbracket(f)(x)\right) \\
& \mathcal{D} \llbracket e_{0} \times e_{1} \rrbracket=\lambda f \cdot \lambda x \cdot \mathcal{D} \llbracket e_{0} \rrbracket\left(\mathcal{D} \llbracket e_{1} \rrbracket(f)\right)(x)
\end{aligned}
$$

Church Encodings - Church Numerals

For example,

$$
\begin{aligned}
\mathcal{D} \llbracket 1+1 \rrbracket & =\lambda f . \lambda x \cdot \mathcal{D} \llbracket 1 \rrbracket(f)(\mathcal{D} \llbracket 1 \rrbracket(f)(x)) \\
& =\lambda f . \lambda x \cdot(\lambda f \cdot \lambda x \cdot f(x))(f)((\lambda f . \lambda x \cdot f(x))(f)(x)) \\
& =\lambda f . \lambda x \cdot f((\lambda f . \lambda x \cdot f(x))(f)(x)) \\
& =\lambda f . \lambda x \cdot f(f(x)) \\
& =\mathcal{D} \llbracket 2 \rrbracket
\end{aligned}
$$

Church Encodings - Church Numerals

For example,

$$
\begin{aligned}
\mathcal{D} \llbracket 1+1 \rrbracket & =\lambda f \cdot \lambda x \cdot \mathcal{D} \llbracket 1 \rrbracket(f)(\mathcal{D} \llbracket 1 \rrbracket(f)(x)) \\
& =\lambda f . \lambda x \cdot(\lambda f \cdot \lambda x \cdot f(x))(f)((\lambda f . \lambda x \cdot f(x))(f)(x)) \\
& =\lambda f . \lambda x \cdot f((\lambda f . \lambda x \cdot f(x))(f)(x)) \\
& =\lambda f . \lambda x \cdot f(f(x)) \\
& =\mathcal{D} \llbracket 2 \rrbracket
\end{aligned}
$$

We can represent other data or operations in the LC using Church encodings, such as integers, booleans, pairs, lists, and so on. ${ }^{1}$

Church Encodings - Church Numerals

For example,

$$
\begin{aligned}
\mathcal{D} \llbracket 1+1 \rrbracket & =\lambda f \cdot \lambda x \cdot \mathcal{D} \llbracket 1 \rrbracket(f)(\mathcal{D} \llbracket 1 \rrbracket(f)(x)) \\
& =\lambda f . \lambda x \cdot(\lambda f \cdot \lambda x \cdot f(x))(f)((\lambda f . \lambda x \cdot f(x))(f)(x)) \\
& =\lambda f . \lambda x \cdot f((\lambda f . \lambda x \cdot f(x))(f)(x)) \\
& =\lambda f . \lambda x \cdot f(f(x)) \\
& =\mathcal{D} \llbracket 2 \rrbracket
\end{aligned}
$$

We can represent other data or operations in the LC using Church encodings, such as integers, booleans, pairs, lists, and so on. ${ }^{1}$

Let's see one more example of Church encoding for booleans and logical operations (i.e., Church booleans).
${ }^{1}$ https://en.wikipedia.org/wiki/Church_encoding

Church Encodings - Church Booleans

The key idea is to encode a boolean b as a function that takes two arguments t and f and applies t if b is true or f if b is false:

$$
\begin{aligned}
& \mathcal{D} \llbracket \text { true } \rrbracket=\lambda t . \lambda f . t \quad \mathcal{D} \llbracket i f\left(e_{1}\right) e_{2} \text { else } e_{3} \rrbracket=\mathcal{D} \llbracket e_{1} \rrbracket\left(\mathcal{D} \llbracket e_{2} \rrbracket\right)\left(\mathcal{D} \llbracket e_{3} \rrbracket\right) \\
& \mathcal{D} \llbracket \mathrm{false} \rrbracket=\lambda t . \lambda f . f \\
& \mathcal{D} \llbracket e_{1} \& \& e_{2} \rrbracket \quad=\mathcal{D} \llbracket e_{1} \rrbracket\left(\mathcal{D} \llbracket e_{2} \rrbracket\right)\left(\mathcal{D} \llbracket e_{1} \rrbracket\right) \\
& \mathcal{D} \llbracket e_{1} \| e_{2} \rrbracket \quad=\mathcal{D} \llbracket e_{1} \rrbracket\left(\mathcal{D} \llbracket e_{1} \rrbracket\right)\left(\mathcal{D} \llbracket e_{2} \rrbracket\right) \\
& \mathcal{D} \llbracket!e_{0} \rrbracket \quad=\lambda t . \lambda f . \mathcal{D} \llbracket e_{0} \rrbracket(f)(t)
\end{aligned}
$$

Church Encodings - Church Booleans

The key idea is to encode a boolean b as a function that takes two arguments t and f and applies t if b is true or f if b is false:

$$
\begin{array}{lll}
\mathcal{D} \llbracket \text { true } \rrbracket=\lambda t . \lambda f . t & \mathcal{D} \llbracket i f\left(e_{1}\right) e_{2} \text { else } e_{3} \rrbracket & =\mathcal{D} \llbracket e_{1} \rrbracket\left(\mathcal{D} \llbracket e_{2} \rrbracket\right)\left(\mathcal{D} \llbracket e_{3} \rrbracket\right) \\
\mathcal{D} \llbracket \text { false】 }=\lambda t . \lambda f . f & \mathcal{D} \llbracket e_{1} \& \& e_{2} \rrbracket & \\
& =\mathcal{D} \llbracket e_{1} \rrbracket\left(\mathcal{D} \llbracket e_{2} \rrbracket\right)\left(\mathcal{D} \llbracket e_{1} \rrbracket\right) \\
& \mathcal{D} \llbracket e_{1} \mid 1 e_{2} \rrbracket & \\
& =\mathcal{D} \llbracket e_{1} \rrbracket\left(\mathcal{D} \llbracket e_{0} \rrbracket\right) & \\
& & =\lambda t . \lambda f . \mathcal{D} \llbracket e_{0} \rrbracket(f)(t)
\end{array}
$$

For example,

$$
\begin{aligned}
\mathcal{D} \llbracket \text { true } \& \& \text { false } \rrbracket & =\mathcal{D} \llbracket \text { true } \rrbracket(\mathcal{D} \llbracket \text { false } \rrbracket)(\mathcal{D} \llbracket \text { true } \rrbracket) \\
& =(\lambda t . \lambda f . t)(\mathcal{D} \llbracket \text { false } \rrbracket)(\mathcal{D} \llbracket \text { true } \rrbracket) \\
& =\mathcal{D} \llbracket \text { false } \rrbracket
\end{aligned}
$$

Alonzo Church invented lambda calculus (LC) in 1930s, and it became the foundation of programming languages:

$$
e::=e|\lambda x . e| e(e)
$$

Alan Turing invented Turing machines (TM) in 1936, and it became the foundation of computers:

Church-Turing Thesis: LC is Turing complete.
Any real-world computation can be translated into an equivalent computation involving a Turing machine or can be done using lambda calculus.

Summary

1. Syntactic Sugar

No More val
FAE - Removing val from FVAE Syntactic Sugar and Desugaring
2. Lambda Calculus

Definition
Church Encodings
Church-Turing Thesis

Next Lecture

- Recursive Functions

Jihyeok Park jihyeok_park@korea.ac.kr https://plrg.korea.ac.kr

