Lecture 9 - Recursive Functions COSE212: Programming Languages

Jihyeok Park

A)PLRG

2023 Fall

- Syntactic Sugar
- FAE - Removing val from FVAE
- Syntactic Sugar and Desugaring
- Lambda Calculus (LC)
- Church Encodings
- Church-Turing Thesis

Recall

- Syntactic Sugar
- FAE - Removing val from FVAE
- Syntactic Sugar and Desugaring
- Lambda Calculus (LC)
- Church Encodings
- Church-Turing Thesis
- In this lecture, we will learn recursion and conditionals.
- Syntactic Sugar
- FAE - Removing val from FVAE
- Syntactic Sugar and Desugaring
- Lambda Calculus (LC)
- Church Encodings
- Church-Turing Thesis
- In this lecture, we will learn recursion and conditionals.
- RFAE - FAE with recursive functions
- Concrete and Abstract Syntax
- Interpreter and Natural Semantics

Contents

1. Recursion

Recursion in F1VAE
Recursion in FVAE
mkRec: Helper Function for Recursion
2. RFAE - FAE with Recursion and Conditionals

Concrete Syntax
Abstract Syntax
3. Interpreter and Natural Semantics for RFAE

Definition with Desugaring
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

Contents

1. Recursion

Recursion in F1VAE
Recursion in FVAE
mkRec: Helper Function for Recursion
2. RFAE - FAE with Recursion and Conditionals

Concrete Syntax
Abstract Syntax
3. Interpreter and Natural Semantics for RFAE

Definition with Desugaring
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

A recursive function is a function that calls itself, and it is useful for iterative processes on inductive data structures.

Recursion

A recursive function is a function that calls itself, and it is useful for iterative processes on inductive data structures.

Let's define a recursive function sum that computes the sum of integers from 1 to n in Scala:

```
def sum(n: Int): Int =
    if (n < 1) 0 // base case
    else n + sum(n - 1) // recursive case
sum(10) // 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 55
```


Recursion

A recursive function is a function that calls itself, and it is useful for iterative processes on inductive data structures.

Let's define a recursive function sum that computes the sum of integers from 1 to n in Scala:

```
def sum(n: Int): Int =
    if (n < 1) 0 // base case
    else n + sum(n - 1) // recursive case
sum(10) // 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 55
```

For recursive functions, we need conditionals to define 1) base cases and 2) recursive cases.

Recursion

Most programming languages support recursive functions:

- Scala

```
def sum(n: Int): Int = if (n<1) 0 else n + sum(n - 1)
```

- C++

```
int sum(int n) { return n < 1 ? 0 : n + sum(n - 1); }
```

- Python

```
def sum(n): return 0 if n < 1 else n + sum(n - 1)
```

- Rust

```
fn sum(n: i32) -> i32 { if n < 1 {0} else {n + sum(n-1)} }
```


Recursion in F1VAE

If we add conditionals to F1VAE, we can define recursive functions in F1VAE without any more extensions for recursion.
Programs
$\mathbb{P} \ni p::=f^{*} e$
(Program)
Function Definitions
Expressions
$\mathbb{F} \ni f::=\operatorname{def} x(x)=e$
(FunDef)
$\left\lvert\, \begin{aligned} & e<e \\ & \left\lvert\, \begin{array}{l}\text { if }(e) e \text { else } e\end{array}\right.\end{aligned}\right.$
Values
$\mathbb{V} \ni v::=n|b|\langle\lambda x . e, \sigma\rangle$
(If)
$\begin{array}{lll}\text { Function Environments } & \Lambda \in \mathbb{X} \xrightarrow{\text { fin }} \mathbb{F} & \text { (FEnv) } \\ \text { Boolean } & b \in \mathbb{B}=\{\text { true, false }\} & \text { (Boolean) }\end{array}$

```
/* F1VAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1)
```

$$
\Lambda=\left[\operatorname{sum} \mapsto f_{0}\right]
$$

where $f_{0}=\operatorname{def} \operatorname{sum}(\mathrm{n})=$ if $(\mathrm{n}<1) 0$ else $\mathrm{n}+\operatorname{sum}(\mathrm{n}+-1)$

Recursion in FVAE

However, the following FVAE expression is not a recursive function:

```
/* FVAE */
val sum = n => {
    if (n < 1) 0
    else n + sum(n + -1)
};
sum(10)
```

Why?

Recursion in FVAE

However, the following FVAE expression is not a recursive function:

```
/* FVAE */
val sum = n => {
    if (n < 1) 0
    else n + sum(n + -1)
};
sum(10)
```

Why?
val does not support recursive definitions. Thus, sum is NOT in the scope of the function body!

Let's pass the function as an argument to itself!

Recursion in FVAE

```
/* FVAE */
val sumX \(=\) sumY \(\Rightarrow\) \{
    \(\mathrm{n}=>\) \{
    if ( \(n<1\) ) 0
    else \(n+\operatorname{sumY}(\) sumY \()(n+-1)\)
    \}
\};
sumX (sumX) (10)
```


Recursion in FVAE

```
/* FVAE */
val sumX = sumY => {
    n => {
        if (n < 1) 0
        else n + sumY(sumY)(n + -1)
    }
};
sumX (sumX) (10)
```

However, it is annoying to always pass the function as an argument to itself!

Let's wrap this to get sum back!

Recursion in FVAE

```
/* FVAE */
val sum = n => {
    val sumX = sumY => {
        n => {
            if (n < 1) 0
            else n + sumY(sumY)(n + -1)
        }
    };
    sumX(sumX)(n)
};
sum(10)
```


Recursion in FVAE

```
/* FVAE */
val sum = n => {
    val sumX = sumY => {
        n => {
            if (n < 1) 0
            else n + sumY(sumY)(n + -1)
        }
    };
    sumX(sumX)(n)
};
sum(10)
```

We can simplify this using η-reduction:

$$
e \equiv \lambda x . e(x) \quad \text { only if } x \text { is NOT FREE in } e .
$$

Recursion in FVAE

```
/* FVAE */
val sum = {
    val sumX = sumY => {
        n => { // ALMOST the same as the original body
            if (n < 1) 0
            else n + sumY(sumY)(n + -1)
        }
    };
    sumX(sumX)
};
sum(10)
```


Recursion in FVAE

```
/* FVAE */
val sum = {
    val sumX = sumY => {
        n => { // ALMOST the same as the original body
            if (n < 1) 0
            else n + sumY(sumY)(n + -1)
        }
    };
    sumX(sumX)
};
sum(10)
```

The function body is almost the same as the original version except that we need to call the function as sumY(sumY) instead of sum.

Let's define a variable sum to be sumY(sumY)!

Recursion in FVAE

```
/* FVAE */
val sum = {
    val sumX = sumY => {
        val sum = sumY(sumY); // INFINITE LOOP
        n => { // EXACTLY the same as the original body
            if (n < 1) 0
            else n + sum(n + -1)
        }
    };
    sumX(sumX)
};
sum(10)
```


Recursion in FVAE

```
/* FVAE */
val sum = {
    val sumX = sumY => {
        val sum = sumY(sumY); // INFINITE LOOP
        n => { // EXACTLY the same as the original body
            if (n < 1) 0
            else n + sum(n + -1)
        }
    };
    sumX(sumX)
};
sum(10)
```

Unfortunately, this is an infinite loop!
We need to delay the evaluation of sum using the η-expansion:

$$
e \quad \equiv \quad \lambda x . e(x) \quad \text { only if } x \text { is NOT FREE in } e .
$$

Recursion in FVAE

```
/* FVAE */
val sum = {
    val sumX = sumY => {
        val sum = x => sumY(sumY)(x);
        n => { // EXACTLY the same as the original body
            if (n < 1) 0
            else n + sum(n + -1)
        }
    };
    sumX(sumX)
};
sum(10)
```


Recursion in FVAE

```
/* FVAE */
val sum = {
    val sumX = sumY => {
        val sum = x => sumY(sumY)(x);
        n => { // EXACTLY the same as the original body
            if (n < 1) 0
            else n + sum(n + -1)
        }
    };
    sumX(sumX)
};
sum(10)
```

Do we need to do this for every recursive function?
To avoid such boilerplate code, let's define a helper function mkRec!

mkRec: Helper Function for Recursion

```
/* FVAE */
val mkRec = body => {
    val fX = fY => {
        val f = x => fY(fY)(x);
        body(f)
        };
    fX(fX)
};
val sum = mkRec(sum => n => { // EXACTLY the same as the original body
    if (n < 1) 0
    else n + sum(n + -1)
});
sum(10)
```


mkRec: Helper Function for Recursion

```
/* FVAE */
val mkRec = body => {
    val fX = fY => {
        val f = x => fY(fY)(x);
        body(f)
    };
    fX(fX)
};
val sum = mkRec(sum => n => { // EXACTLY the same as the original body
    if (n < 1) 0
    else n + sum(n + -1)
});
sum(10)
```

For example, we can define factorial (fac) function using mkRec:

```
/* FVAE */
val fac = mkRec(fac => n => if (n < 1) 1 else n * fac(n + -1));
fac(5) // 5 * 4* 3*2*1 = 120
```


Contents

1. Recursion

Recursion in F1VAE
Recursion in FVAE
mkRec: Helper Function for Recursion
2. RFAE - FAE with Recursion and Conditionals

Concrete Syntax
Abstract Syntax
3. Interpreter and Natural Semantics for RFAE

Definition with Desugaring
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

RFAE - FAE with Recursion and Conditionals

Now, let's extend FAE into RFAE with recursion and conditionals.

```
/* RFAE */
def sum(n) = {
    if (n < 1) 0
    else n + sum(n + -1)
};
sum(10) // 55
```

```
/* RFAE */
def fib(n) = {
    if (n < 2) n
    else fib(n + -1) + fib(n + -2)
};
fib(7) // 13
```


RFAE - FAE with Recursion and Conditionals

Now, let's extend FAE into RFAE with recursion and conditionals.

```
/* RFAE */
def sum(n) = {
    if (n < 1) 0
    else n + sum(n + -1)
};
sum(10) // 55
```

```
/* RFAE */
def fib(n) = {
    if (n < 2) n
    else fib(n + -1) + fib(n + -2)
};
fib(7) // 13
```

For RFAE, we need to extend expressions of FAE with
(1) arithmetic comparison operators
(2) conditionals
(3) recursive function definitions

Concrete Syntax

```
// expressions
<expr> ::= ...
    | <expr> "<" <expr>
    | "if" "(" <expr> ")" <expr> "else" <expr>
    | "def" <id> "(" <id> ")" "=" <expr> ";" <expr>
```

For RFAE, we need to extend expressions of FAE with
(1) arithmetic comparison operators
(2) conditionals
(3) recursive function definitions

Abstract Syntax

Let's define the abstract syntax of RFAE in BNF:
Expressions $\mathbb{E} \ni e::=\ldots$

$$
\begin{array}{|ll}
\mid e<e & (L t) \\
\mid \text { if }(e) e \text { else } e & \text { (If) } \\
\mid \operatorname{def} x(x)=e ; e & (\operatorname{Rec})
\end{array}
$$

Abstract Syntax

Let's define the abstract syntax of RFAE in BNF:
Expressions $\mathbb{E} \ni$ e $::=\ldots$

$$
\begin{array}{|ll}
\mid e<e & (\text { Lt }) \\
\mid \text { if }(e) e \text { else } e & \text { (If) } \\
\mid \operatorname{def} x(x)=e ; e & \text { (Rec) }
\end{array}
$$

```
enum Expr:
    // less-than
    case Lt(left: Expr, right: Expr)
    // conditionals
    case If(cond: Expr, thenExpr: Expr, elseExpr: Expr)
    // recursive function definition
    case Rec(name: String, param: String, body: Expr, scope: Expr)
```


Contents

1. Recursion

Recursion in F1VAE
Recursion in FVAE
mkRec: Helper Function for Recursion
2. RFAE - FAE with Recursion and Conditionals

Concrete Syntax
Abstract Syntax
3. Interpreter and Natural Semantics for RFAE

Definition with Desugaring
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

Definition with Desugaring

There are two ways to define the semantics of recursive function definitions 1) using desugaring or 2) directly defining it.

Definition with Desugaring

There are two ways to define the semantics of recursive function definitions 1) using desugaring or 2) directly defining it.

The first way is to treat recursive function definitions as syntactic sugar and desugar them with mkRec:

$$
\mathcal{D} \llbracket \operatorname{def} x_{0}\left(x_{1}\right)=e_{0} ; e_{1} \rrbracket=\mathcal{D} \llbracket \operatorname{val} x_{0}=\operatorname{mkRec}\left(\lambda x_{0} \cdot \lambda x_{1} \cdot e_{0}\right) ; e_{1} \rrbracket
$$

Definition with Desugaring

There are two ways to define the semantics of recursive function definitions 1) using desugaring or 2) directly defining it.

The first way is to treat recursive function definitions as syntactic sugar and desugar them with mkRec:

$$
\begin{aligned}
\mathcal{D} \llbracket \operatorname{def} x_{0}\left(x_{1}\right)=e_{0} ; e_{1} \rrbracket & =\mathcal{D} \llbracket \operatorname{val} x_{0}=\operatorname{mkRec}\left(\lambda x_{0} \cdot \lambda x_{1} \cdot e_{0}\right) ; e_{1} \rrbracket \\
& =\left(\lambda x_{0} \cdot \mathcal{D} \llbracket e_{1} \rrbracket\right)\left(\operatorname{mkRec}\left(\lambda x_{0} \cdot \lambda x_{1} \cdot \mathcal{D} \llbracket e_{0} \rrbracket\right)\right)
\end{aligned}
$$

Definition with Desugaring

There are two ways to define the semantics of recursive function definitions 1) using desugaring or 2) directly defining it.

The first way is to treat recursive function definitions as syntactic sugar and desugar them with mkRec:

$$
\begin{aligned}
\mathcal{D} \llbracket \operatorname{def} x_{0}\left(x_{1}\right)=e_{0} ; e_{1} \rrbracket & =\mathcal{D} \llbracket \operatorname{val} x_{0}=\operatorname{mkRec}\left(\lambda x_{0} \cdot \lambda x_{1} \cdot e_{0}\right) ; e_{1} \rrbracket \\
& =\left(\lambda x_{0} \cdot \mathcal{D} \llbracket e_{1} \rrbracket\right)\left(\operatorname{mkRec}\left(\lambda x_{0} \cdot \lambda x_{1} \cdot \mathcal{D} \llbracket e_{0} \rrbracket\right)\right)
\end{aligned}
$$

```
/* RFAE */
def sum(n) = if (n<1) 0 else n+sum(n+-1); sum(10)
// will be desugared into
(sum => sum(10))(mkRec(sum => (n => if (n<1) 0 else n+sum(n+-1))))
```

```
/* RFAE */
def fib(n) = if(n<2) n else fib(n+-1)+fib(n+-2); fib(7)
// will be desugared into
(fib => fib(7))(mkRec(fib => (n => if(n<2) n else fib(n+-1)+fib(n+-2))))
```


Interpreter and Natural Semantics

The second way is to directly 1) implement the interpreter:

```
def interp(expr: Expr, env: Env): Value = ???
```

and 2) define the natural semantics for recursive function definitions and other new cases.

$$
\sigma \vdash e \Rightarrow v
$$

Expressions $\mathbb{E} \ni e::=\ldots$

$$
\begin{array}{|ll}
\mid e<e & \text { (Lt) } \\
\mid \text { if }(e) e \text { else } e & \text { (If) } \\
\mid \operatorname{def} x(x)=e ; e & \text { (Rec) }
\end{array}
$$

Values $\mathbb{V} \ni v::=n|b|\langle\lambda x . e, \sigma\rangle$

```
enum Value:
    case NumV(number: BigInt)
    case BoolV(bool: Boolean)
    case CloV(param: String, body: Expr, env: Env)
```


Arithmetic Comparison Operators

```
type NCOp = (BigInt, BigInt) => Boolean
def numCOp(x: String)(op: NCOp)(l: Value, r: Value): Value = (l, r)
    match
    case (NumV(l), NumV(r)) => BoolV(op(l, r))
    case (l, r) => error(s"invalid operation: ${l.str} $x ${r.str}")
val numLt: (Value, Value) => Value = numCOp("<")(_ < _)
def interp(expr: Expr, env: Env): Value = expr match
    case Lt(l, r) => numLt(interp(l, env), interp(r, env))
```

 \(\sigma \vdash e \Rightarrow v\)
 \(\operatorname{Lt} \frac{\sigma \vdash e_{1} \Rightarrow n_{1} \quad \sigma \vdash e_{2} \Rightarrow n_{2}}{\sigma \vdash e_{1}<e_{2} \Rightarrow n_{1}<n_{2}}\)

Conditionals

```
def interp(expr: Expr, env: Env): Value = expr match
    ..
    case If(c, t, e) => interp(c, env) match
        case BoolV(true) => interp(t, env)
        case BoolV(false) => interp(e, env)
        case v => error(s"not a boolean: ${v.str}")
```

 \(\sigma \vdash e \Rightarrow v\)
 If \(_{T} \frac{\sigma \vdash e_{0} \Rightarrow \text { true } \quad \sigma \vdash e_{1} \Rightarrow v_{1}}{\sigma \vdash \operatorname{if~}\left(e_{0}\right) e_{1} \text { else } e_{2} \Rightarrow v_{1}}\)
 \(\operatorname{If}_{F} \frac{\sigma \vdash e_{0} \Rightarrow \text { false } \quad \sigma \vdash e_{2} \Rightarrow v_{2}}{\sigma \vdash \text { if }\left(e_{0}\right) e_{1} \text { else } e_{2} \Rightarrow v_{2}}\)

Recursive Function Definitions

```
def interp(expr: Expr, env: Env): Value = expr match
    case Rec(n, p, b, s) =>
        val newEnv: Env = ???
        interp(s, newEnv)
```

$$
\begin{gathered}
\sigma \vdash e \Rightarrow v \\
\operatorname{Rec} \frac{\sigma^{\prime}=\sigma\left[x_{0} \mapsto\left\langle\lambda x_{1} \cdot e_{0}, \sigma^{\prime}\right\rangle\right] \quad \sigma^{\prime} \vdash e_{1} \Rightarrow v_{1}}{\sigma \vdash \operatorname{def} x_{0}\left(x_{1}\right)=e_{0} ; e_{1} \Rightarrow v_{1}}
\end{gathered}
$$

Recursive Function Definitions

```
def interp(expr: Expr, env: Env): Value = expr match
    case Rec(n, p, b, s) =>
        val newEnv: Env = env + (n -> CloV(p, b, newEnv)) // error
        interp(s, newEnv)
```

$$
\begin{gathered}
\sigma \vdash e \Rightarrow v \\
\operatorname{Rec} \frac{\sigma^{\prime}=\sigma\left[x_{0} \mapsto\left\langle\lambda x_{1} \cdot e_{0}, \sigma^{\prime}\right\rangle\right] \quad \sigma^{\prime} \vdash e_{1} \Rightarrow v_{1}}{\sigma \vdash \operatorname{def} x_{0}\left(x_{1}\right)=e_{0} ; e_{1} \Rightarrow v_{1}}
\end{gathered}
$$

Let's delay the evaluation of newEnv using the η-expansion again:

$$
e \equiv \lambda x . e(x) \quad \text { only if } x \text { is NOT FREE in } e .
$$

Recursive Function Definitions

We augment the closure value with an environment factory (() => Env) rather than an environment (Env):

```
enum Value:
    case CloV(param: String, body: Expr, env: () => Env)
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Func(p, b) => CloV(p, b, () => env)
    case App(f, e) => interp(f, env) match
        case CloV(p, b, fenv) => interp(b, fenv() + (p -> interp(e, env)))
        case v => error(s"not a function: ${v.str}")
    case Rec(n, p, b, s) =>
        val newEnv: Env = env + (n -> CloV(p, b, () => newEnv)) // error
        interp(s, newEnv)
```

It sill doesn't work because newEnv is not yet defined.
Let's use a lazy value (lazy val) to delay the evaluation of newEnv.

Recursive Function Definitions

```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Rec(n, p, b, s) =>
        lazy val newEnv: Env = env + (n -> CloV(p, b, () => newEnv))
        interp(s, newEnv)
```

$$
\begin{gathered}
\sigma \vdash e \Rightarrow v \\
\operatorname{Rec} \frac{\sigma^{\prime}=\sigma\left[x_{0} \mapsto\left\langle\lambda x_{1} \cdot e_{0}, \sigma^{\prime}\right\rangle\right] \quad \sigma^{\prime} \vdash e_{1} \Rightarrow v_{1}}{\sigma \vdash \operatorname{def} x_{0}\left(x_{1}\right)=e_{0} ; e_{1} \Rightarrow v_{1}}
\end{gathered}
$$

We will learn more about lazy values in the later lectures in this course.

Exercise \#5

- Please see this document ${ }^{1}$ on GitHub.
- Implement interp function.
- It is just an exercise, and you don't need to submit anything.
- However, some exam questions might be related to this exercise.
${ }^{1}$ https://github.com/ku-plrg-classroom/docs/tree/main/cose212/rfae.

Summary

1. Recursion

Recursion in F1VAE
Recursion in FVAE
mkRec: Helper Function for Recursion
2. RFAE - FAE with Recursion and Conditionals

Concrete Syntax
Abstract Syntax
3. Interpreter and Natural Semantics for RFAE

Definition with Desugaring
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

Next Lecture

- Mutable Data Structures

Jihyeok Park jihyeok_park@korea.ac.kr https://plrg.korea.ac.kr

