
Lecture 11 – Mutable Variables
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 1 / 41



Recall
• Mutation makes it possible to change the state of a program by

updating the contents of a data structure or a variable.
• Mutable data structures
• Mutable variables

• Mutable Data Structures – Mutable Boxes

• BFAE – FAE with Mutable Boxes
• Evaluation with Memories

• In this lecture, we will learn Mutable Variables

• MFAE – FAE with Mutable Variables
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics
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Mutable Variables
A mutable variable is a variable whose value can be changed after its
initialization.

Let’s define mutable variables in Scala:

// A mutable variable `x` of type `Int` with 1
var x: Int = 1
x + 2 // 1 + 2 == 3 : Int

// We can reassign a mutable variable `x`
x = 2 // x == 2
x + 2 // 2 + 2 == 4 : Int

// The function `f` is impure because it uses a mutable variable `y`
var y: Int = 1
def f(x: Int): Int = x + y
f(5) // 5 + 1 == 6 : Int
y = 3
f(5) // 5 + 3 == 8 : Int
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MFAE – FAE with Mutable Variables
Now, let’s extend FAE into MFAE to support mutable variables.

/* MFAE */
var x = 5;
x; // 5
x = 8;
x // 8

/* MFAE */
var y = 1;
var f = x => { x = x + y; x * x };
f(5); // (5 + 1) * (5 + 1) = 36
y = 3;
f(5); // (5 + 3) * (5 + 3) = 64

For MFAE, we need to extend expressions of FAE with

1 mutable variables (var) rather than immutable variables (val)
(all variables, including parameters, are mutable in MFAE)

2 assignment (=)
(right-associative: e.g., x = y = e is equivalent to x = (y = e))

3 sequence of expressions
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Concrete Syntax

// expressions
<expr> ::= ...

| "var" <id> "=" <expr> ";" <expr>
| <id> "=" <expr>
| <expr> ";" <expr>

For MFAE, we need to extend expressions of FAE with

1 mutable variables (var) rather than immutable variables (val)
(all variables, including parameters, are mutable in MFAE)

2 assignment (=)
(right-associative: e.g., x = y = e is equivalent to x = (y = e))

3 sequence of expressions
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Abstract Syntax
Let’s define the abstract syntax of MFAE in BNF:

Expressions E ∋ e ::= . . .
| var x = e; e (Var)
| x = e (Assign)
| e; e (Seq)

enum Expr:
...
// mutable variable definition
case Var(name: String, init: Expr, body: Expr)
// variable assignment
case Assign(name: String, expr: Expr)
// sequence
case Seq(left: Expr, right: Expr)
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Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */ *
var x = 5;
x;
x = 8;
x

σ = [

]

A : a0 a1 a2 a3 . . .

M = . . .
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Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */
var x = 5; *
x;
x = 8;
x

σ = [
x 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 5 . . .
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Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */
var x = 5;
x; /* 5 */ *
x = 8;
x

σ = [
x 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 5 . . .
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Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */
var x = 5;
x; /* 5 */
x = 8; *
x

σ = [
x 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 8 . . .
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Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */
var x = 5;
x; /* 5 */
x = 8;
x /* 8 */ *

σ = [
x 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 8 . . .
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Evaluation with Memories
Here is another MFAE expression:

/* MFAE */ *
var y = 1;
var f = x => {

x = x + y;
x * x

};
f(5);
y = 3;
f(5);

σ = [

]

A : a0 a1 a2 a3 . . .

M = . . .

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 16 / 41



Example
Here is another MFAE expression:

/* MFAE */
var y = 1; *
var f = x => {

x = x + y;
x * x

};
f(5);
y = 3;
f(5);

σ = [
y 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 1 . . .
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y;
x * x

}; *
f(5);
y = 3;
f(5);

σ = [
y 7→ a0
f 7→ a1

]

A : a0 a1 a2 a3 . . .

M = 1 v . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => { *

x = x + y;
x * x

};
f(5);
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a2

]

A : a0 a1 a2 a3 . . .

M = 1 v 5 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y; /* 5 + 1 */ *
x * x

};
f(5);
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a2

]

A : a0 a1 a2 a3 . . .

M = 1 v 6 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y; /* 5 + 1 */
x * x /* 6 * 6 */ *

};
f(5);
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a2

]

A : a0 a1 a2 a3 . . .

M = 1 v 6 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y;
x * x

};
f(5); /* 36 */ *
y = 3;
f(5);

σ = [
y 7→ a0
f 7→ a1

]

A : a0 a1 a2 a3 . . .

M = 1 v 6 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y;
x * x

};
f(5); /* 36 */
y = 3; *
f(5);

σ = [
y 7→ a0
f 7→ a1

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => { *

x = x + y;
x * x

};
f(5); /* 36 */
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a3

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 5 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y; /* 5 + 3 */ *
x * x

};
f(5); /* 36 */
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a3

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 8 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y; /* 5 + 3 */
x * x /* 8 * 8 */ *

};
f(5); /* 36 */
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a3

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 8 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y;
x * x

};
f(5); /* 36 */
y = 3;
f(5); /* 64 */ *

σ = [
y 7→ a0
f 7→ a1

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 8 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩
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Interpreter and Natural Semantics
For MFAE, we need to 1) implement the interpreter with environments
and memories by passing the updated memory in the result:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = ???

type Env = Map[String, Addr]
type Addr = Int
type Mem = Map[Addr, Value]

enum Value:
case NumV(n: BigInt)
case CloV(p: String, b: Expr, e: Env)

and 2) define the natural semantics with environments and memories by
passing the updated memory in the result:

σ, M ⊢ e ⇒ v, M

Environments σ ∈ X fin−→ A (Env)
Addresses a ∈ A (Addr)
Memories M ∈ A fin−→ V (Mem)
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Mutable Variable

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Var(name, init, body) =>

val (iv, imem) = interp(init, env, mem)
val addr = malloc(imem)
interp(body, env + (name -> addr), imem + (addr -> iv))

σ, M ⊢ e ⇒ v, M

Var

σ, M ⊢ e1 ⇒ v1, M1
a /∈ Domain(M1) σ[x 7→ a], M1[a 7→ v1] ⊢ e2 ⇒ v2, M2

σ, M ⊢ var x = e1; e2 ⇒ v2, M2

We learned one way to implement malloc in the previous lecture:

def malloc(mem: Mem): Addr = mem.keySet.maxOption.fold(0)(_ + 1)
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Identifier Lookup

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Id(name) => (mem(lookupId(env, name)), mem)

def lookupId(env: Env, name: String): Addr =
env.getOrElse(name, error(s"free identifier: $name"))

σ, M ⊢ e ⇒ v, M

Id
x ∈ Domain(σ)

σ, M ⊢ x ⇒ M(σ(x)), M
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Function Application

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case App(fun, arg) =>

val (fv, fmem) = interp(fun, env, mem)
fv match

case CloV(param, body, fenv) =>
val (av, amem) = interp(arg, env, fmem)
val addr = malloc(amem)
interp(body, fenv + (param -> addr), amem + (addr -> av))

case _ =>
error(s"not a function: ${fv.str}")

σ, M ⊢ e ⇒ v, M

App

σ, M ⊢ e1 ⇒ ⟨λx.e3, σ′⟩, M1 σ, M1 ⊢ e2 ⇒ v2, M2
a /∈ Domain(M2) σ′[x 7→ a], M2[a 7→ v2] ⊢ e3 ⇒ v3, M3

σ, M ⊢ e1(e2) ⇒ v3, M3
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Assignment

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Assign(name, expr) =>

val (ev, emem) = interp(expr, env, mem)
(ev, emem + (lookupId(env, name) -> ev))

σ, M ⊢ e ⇒ v, M

Assign
σ, M ⊢ e ⇒ v, M ′ x ∈ Domain(σ)

σ, M ⊢ x = e ⇒ v, M ′[σ(x) 7→ v]
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Call-by-Value vs. Call-by-Reference
The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBV

σ = [
f 7→ ⟨λx.(. . .),∅⟩,
a 7→ a0, b 7→ a1,

]

a0 a1 a2 a3 a4
M = 1 2

/* MFAE */
var f = x => y => {

var t = x;
x = y;
y = t;

};
var a = 1;
var b = 2; *
f(a)(b); a; b

CBR

σ = [
f 7→ ⟨λx.(. . .),∅⟩,
a 7→ a0, b 7→ a1,

]

a0 a1 a2
M = 1 2
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Call-by-Value vs. Call-by-Reference
The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBV

σ = [
x 7→ a2, y 7→ a3,

]

a0 a1 a2 a3 a4
M = 1 2 1 2

/* MFAE */
var f = x => y => { *

var t = x;
x = y;
y = t;

};
var a = 1;
var b = 2;
f(a)(b); a; b

CBR

σ = [
x 7→ a0, y 7→ a1,

]

a0 a1 a2
M = 1 2
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Call-by-Value vs. Call-by-Reference
The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBV

σ = [
x 7→ a2, y 7→ a3,
t 7→ a4,

]

a0 a1 a2 a3 a4
M = 1 2 2 1 1

/* MFAE */
var f = x => y => {

var t = x;
x = y;
y = t; *

};
var a = 1;
var b = 2;
f(a)(b); a; b

CBR

σ = [
x 7→ a0, y 7→ a1,
t 7→ a2,

]

a0 a1 a2
M = 2 1 1
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Call-by-Value vs. Call-by-Reference
The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBV

σ = [
f 7→ ⟨λx.(. . .),∅⟩,
a 7→ a0, b 7→ a1,

]

a0 a1 a2 a3 a4
M = 1 2 2 1 1

/* MFAE */
var f = x => y => {

var t = x;
x = y;
y = t;

};
var a = 1;
var b = 2;
f(a)(b); a; b *

CBR

σ = [
f 7→ ⟨λx.(. . .),∅⟩,
a 7→ a0, b 7→ a1,

]

a0 a1 a2
M = 2 1 1
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Function Application (Call-by-Reference)
We can define the semantics of MFAE with the call-by-reference (CBR)
evaluation strategy by adding the following case:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case App(fun, arg) =>

val (fv, fmem) = interp(fun, env, mem)
fv match

case CloV(param, body, fenv) => arg match
case Id(name) =>

val addr = lookupId(env, name)
interp(body, fenv + (param -> addr), fmem)

case _ => ...
case _ => error(s"not a function: ${fv.str}")

...

Appx

σ, M ⊢ e1 ⇒ ⟨λx′.e2, σ′⟩, M1
x ∈ Domain(σ) σ′[x′ 7→ σ(x)], M1 ⊢ e2 ⇒ v2, M2

σ, M ⊢ e1(x) ⇒ v2, M2
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Exercise #7

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/mfae

• Please see above document on GitHub:
• Implement interp function.
• Implement interpCBR function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.
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Next Lecture
• Garbage Collection

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr
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