
Lecture 11 – Mutable Variables
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 1 / 41

Recall
• Mutation makes it possible to change the state of a program by

updating the contents of a data structure or a variable.
• Mutable data structures
• Mutable variables

• Mutable Data Structures – Mutable Boxes

• BFAE – FAE with Mutable Boxes
• Evaluation with Memories

• In this lecture, we will learn Mutable Variables

• MFAE – FAE with Mutable Variables
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 2 / 41

Contents

1. Mutable Variables

2. MFAE – FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 3 / 41

Contents

1. Mutable Variables

2. MFAE – FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 4 / 41

Mutable Variables
A mutable variable is a variable whose value can be changed after its
initialization.

Let’s define mutable variables in Scala:

// A mutable variable `x` of type `Int` with 1
var x: Int = 1
x + 2 // 1 + 2 == 3 : Int

// We can reassign a mutable variable `x`
x = 2 // x == 2
x + 2 // 2 + 2 == 4 : Int

// The function `f` is impure because it uses a mutable variable `y`
var y: Int = 1
def f(x: Int): Int = x + y
f(5) // 5 + 1 == 6 : Int
y = 3
f(5) // 5 + 3 == 8 : Int

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 5 / 41

Contents

1. Mutable Variables

2. MFAE – FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 6 / 41

MFAE – FAE with Mutable Variables
Now, let’s extend FAE into MFAE to support mutable variables.

/* MFAE */
var x = 5;
x; // 5
x = 8;
x // 8

/* MFAE */
var y = 1;
var f = x => { x = x + y; x * x };
f(5); // (5 + 1) * (5 + 1) = 36
y = 3;
f(5); // (5 + 3) * (5 + 3) = 64

For MFAE, we need to extend expressions of FAE with

1 mutable variables (var) rather than immutable variables (val)
(all variables, including parameters, are mutable in MFAE)

2 assignment (=)
(right-associative: e.g., x = y = e is equivalent to x = (y = e))

3 sequence of expressions

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 7 / 41

Concrete Syntax

// expressions
<expr> ::= ...

| "var" <id> "=" <expr> ";" <expr>
| <id> "=" <expr>
| <expr> ";" <expr>

For MFAE, we need to extend expressions of FAE with

1 mutable variables (var) rather than immutable variables (val)
(all variables, including parameters, are mutable in MFAE)

2 assignment (=)
(right-associative: e.g., x = y = e is equivalent to x = (y = e))

3 sequence of expressions

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 8 / 41

Abstract Syntax
Let’s define the abstract syntax of MFAE in BNF:

Expressions E ∋ e ::= . . .
| var x = e; e (Var)
| x = e (Assign)
| e; e (Seq)

enum Expr:
...
// mutable variable definition
case Var(name: String, init: Expr, body: Expr)
// variable assignment
case Assign(name: String, expr: Expr)
// sequence
case Seq(left: Expr, right: Expr)

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 9 / 41

Contents

1. Mutable Variables

2. MFAE – FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 10 / 41

Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */ *
var x = 5;
x;
x = 8;
x

σ = [

]

A : a0 a1 a2 a3 . . .

M = . . .

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 11 / 41

Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */
var x = 5; *
x;
x = 8;
x

σ = [
x 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 5 . . .

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 12 / 41

Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */
var x = 5;
x; /* 5 */ *
x = 8;
x

σ = [
x 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 5 . . .

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 13 / 41

Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */
var x = 5;
x; /* 5 */
x = 8; *
x

σ = [
x 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 8 . . .

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 14 / 41

Evaluation with Memories
We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let’s see how to evaluate the following MFAE expression:

/* MFAE */
var x = 5;
x; /* 5 */
x = 8;
x /* 8 */ *

σ = [
x 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 8 . . .

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 15 / 41

Evaluation with Memories
Here is another MFAE expression:

/* MFAE */ *
var y = 1;
var f = x => {

x = x + y;
x * x

};
f(5);
y = 3;
f(5);

σ = [

]

A : a0 a1 a2 a3 . . .

M = . . .

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 16 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1; *
var f = x => {

x = x + y;
x * x

};
f(5);
y = 3;
f(5);

σ = [
y 7→ a0

]

A : a0 a1 a2 a3 . . .

M = 1 . . .

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 17 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y;
x * x

}; *
f(5);
y = 3;
f(5);

σ = [
y 7→ a0
f 7→ a1

]

A : a0 a1 a2 a3 . . .

M = 1 v . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 18 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => { *

x = x + y;
x * x

};
f(5);
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a2

]

A : a0 a1 a2 a3 . . .

M = 1 v 5 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 19 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y; /* 5 + 1 */ *
x * x

};
f(5);
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a2

]

A : a0 a1 a2 a3 . . .

M = 1 v 6 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 20 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y; /* 5 + 1 */
x * x /* 6 * 6 */ *

};
f(5);
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a2

]

A : a0 a1 a2 a3 . . .

M = 1 v 6 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 21 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y;
x * x

};
f(5); /* 36 */ *
y = 3;
f(5);

σ = [
y 7→ a0
f 7→ a1

]

A : a0 a1 a2 a3 . . .

M = 1 v 6 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 22 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y;
x * x

};
f(5); /* 36 */
y = 3; *
f(5);

σ = [
y 7→ a0
f 7→ a1

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 23 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => { *

x = x + y;
x * x

};
f(5); /* 36 */
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a3

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 5 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 24 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y; /* 5 + 3 */ *
x * x

};
f(5); /* 36 */
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a3

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 8 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 25 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y; /* 5 + 3 */
x * x /* 8 * 8 */ *

};
f(5); /* 36 */
y = 3;
f(5);

σ = [
y 7→ a0
x 7→ a3

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 8 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 26 / 41

Example
Here is another MFAE expression:

/* MFAE */
var y = 1;
var f = x => {

x = x + y;
x * x

};
f(5); /* 36 */
y = 3;
f(5); /* 64 */ *

σ = [
y 7→ a0
f 7→ a1

]

A : a0 a1 a2 a3 . . .

M = 3 v 6 8 . . .

where v = ⟨λx.(x = x + y; x * x), [y 7→ a0]⟩

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 27 / 41

Interpreter and Natural Semantics
For MFAE, we need to 1) implement the interpreter with environments
and memories by passing the updated memory in the result:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = ???

type Env = Map[String, Addr]
type Addr = Int
type Mem = Map[Addr, Value]

enum Value:
case NumV(n: BigInt)
case CloV(p: String, b: Expr, e: Env)

and 2) define the natural semantics with environments and memories by
passing the updated memory in the result:

σ, M ⊢ e ⇒ v, M

Environments σ ∈ X fin−→ A (Env)
Addresses a ∈ A (Addr)
Memories M ∈ A fin−→ V (Mem)

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 28 / 41

Mutable Variable

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Var(name, init, body) =>

val (iv, imem) = interp(init, env, mem)
val addr = malloc(imem)
interp(body, env + (name -> addr), imem + (addr -> iv))

σ, M ⊢ e ⇒ v, M

Var

σ, M ⊢ e1 ⇒ v1, M1
a /∈ Domain(M1) σ[x 7→ a], M1[a 7→ v1] ⊢ e2 ⇒ v2, M2

σ, M ⊢ var x = e1; e2 ⇒ v2, M2

We learned one way to implement malloc in the previous lecture:

def malloc(mem: Mem): Addr = mem.keySet.maxOption.fold(0)(_ + 1)

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 29 / 41

Identifier Lookup

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Id(name) => (mem(lookupId(env, name)), mem)

def lookupId(env: Env, name: String): Addr =
env.getOrElse(name, error(s"free identifier: $name"))

σ, M ⊢ e ⇒ v, M

Id
x ∈ Domain(σ)

σ, M ⊢ x ⇒ M(σ(x)), M

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 30 / 41

Function Application

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case App(fun, arg) =>

val (fv, fmem) = interp(fun, env, mem)
fv match

case CloV(param, body, fenv) =>
val (av, amem) = interp(arg, env, fmem)
val addr = malloc(amem)
interp(body, fenv + (param -> addr), amem + (addr -> av))

case _ =>
error(s"not a function: ${fv.str}")

σ, M ⊢ e ⇒ v, M

App

σ, M ⊢ e1 ⇒ ⟨λx.e3, σ′⟩, M1 σ, M1 ⊢ e2 ⇒ v2, M2
a /∈ Domain(M2) σ′[x 7→ a], M2[a 7→ v2] ⊢ e3 ⇒ v3, M3

σ, M ⊢ e1(e2) ⇒ v3, M3

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 31 / 41

Assignment

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Assign(name, expr) =>

val (ev, emem) = interp(expr, env, mem)
(ev, emem + (lookupId(env, name) -> ev))

σ, M ⊢ e ⇒ v, M

Assign
σ, M ⊢ e ⇒ v, M ′ x ∈ Domain(σ)

σ, M ⊢ x = e ⇒ v, M ′[σ(x) 7→ v]

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 32 / 41

Contents

1. Mutable Variables

2. MFAE – FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 33 / 41

Call-by-Value vs. Call-by-Reference
The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBV

σ = [
f 7→ ⟨λx.(. . .),∅⟩,
a 7→ a0, b 7→ a1,

]

a0 a1 a2 a3 a4
M = 1 2

/* MFAE */
var f = x => y => {

var t = x;
x = y;
y = t;

};
var a = 1;
var b = 2; *
f(a)(b); a; b

CBR

σ = [
f 7→ ⟨λx.(. . .),∅⟩,
a 7→ a0, b 7→ a1,

]

a0 a1 a2
M = 1 2

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 34 / 41

Call-by-Value vs. Call-by-Reference
The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBV

σ = [
x 7→ a2, y 7→ a3,

]

a0 a1 a2 a3 a4
M = 1 2 1 2

/* MFAE */
var f = x => y => { *

var t = x;
x = y;
y = t;

};
var a = 1;
var b = 2;
f(a)(b); a; b

CBR

σ = [
x 7→ a0, y 7→ a1,

]

a0 a1 a2
M = 1 2

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 35 / 41

Call-by-Value vs. Call-by-Reference
The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBV

σ = [
x 7→ a2, y 7→ a3,
t 7→ a4,

]

a0 a1 a2 a3 a4
M = 1 2 2 1 1

/* MFAE */
var f = x => y => {

var t = x;
x = y;
y = t; *

};
var a = 1;
var b = 2;
f(a)(b); a; b

CBR

σ = [
x 7→ a0, y 7→ a1,
t 7→ a2,

]

a0 a1 a2
M = 2 1 1

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 36 / 41

Call-by-Value vs. Call-by-Reference
The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBV

σ = [
f 7→ ⟨λx.(. . .),∅⟩,
a 7→ a0, b 7→ a1,

]

a0 a1 a2 a3 a4
M = 1 2 2 1 1

/* MFAE */
var f = x => y => {

var t = x;
x = y;
y = t;

};
var a = 1;
var b = 2;
f(a)(b); a; b *

CBR

σ = [
f 7→ ⟨λx.(. . .),∅⟩,
a 7→ a0, b 7→ a1,

]

a0 a1 a2
M = 2 1 1

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 37 / 41

Function Application (Call-by-Reference)
We can define the semantics of MFAE with the call-by-reference (CBR)
evaluation strategy by adding the following case:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case App(fun, arg) =>

val (fv, fmem) = interp(fun, env, mem)
fv match

case CloV(param, body, fenv) => arg match
case Id(name) =>

val addr = lookupId(env, name)
interp(body, fenv + (param -> addr), fmem)

case _ => ...
case _ => error(s"not a function: ${fv.str}")

...

Appx

σ, M ⊢ e1 ⇒ ⟨λx′.e2, σ′⟩, M1
x ∈ Domain(σ) σ′[x′ 7→ σ(x)], M1 ⊢ e2 ⇒ v2, M2

σ, M ⊢ e1(x) ⇒ v2, M2

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 38 / 41

Exercise #7

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/mfae

• Please see above document on GitHub:
• Implement interp function.
• Implement interpCBR function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 39 / 41

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/mfae

Summary

1. Mutable Variables

2. MFAE – FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 40 / 41

Next Lecture
• Garbage Collection

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 11 – Mutable Variables October 9, 2024 41 / 41

https://plrg.korea.ac.kr

	Mutable Variables
	MFAE – FAE with Mutable Variables
	Concrete Syntax
	Abstract Syntax

	Interpreter and Natural Semantics for MFAE
	Evaluation with Memories
	Interpreter and Natural Semantics
	Mutable Variable
	Identifier Lookup
	Function Application
	Assignment

	Call-by-Value vs. Call-by-Reference

