
Lecture 14 – Continuations (1)
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 1 / 44

Recall
• Lazy Evaluation

• Call-by-Name (CBN)
• Call-by-Need (CBN’)

• LFAE – FAE with Lazy Evaluation

• We will learn about continuations with the following topics:
• Continuations (Lecture 14 & 15)
• First-Class Continuations (Lecture 16)
• Compiling with continuations (Lecture 17)

• In this lecture, we will focus on the meaning of continuations.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 2 / 44

Recall
• Lazy Evaluation

• Call-by-Name (CBN)
• Call-by-Need (CBN’)

• LFAE – FAE with Lazy Evaluation

• We will learn about continuations with the following topics:
• Continuations (Lecture 14 & 15)
• First-Class Continuations (Lecture 16)
• Compiling with continuations (Lecture 17)

• In this lecture, we will focus on the meaning of continuations.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 2 / 44

Recall
• Lazy Evaluation

• Call-by-Name (CBN)
• Call-by-Need (CBN’)

• LFAE – FAE with Lazy Evaluation

• We will learn about continuations with the following topics:
• Continuations (Lecture 14 & 15)
• First-Class Continuations (Lecture 16)
• Compiling with continuations (Lecture 17)

• In this lecture, we will focus on the meaning of continuations.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 2 / 44

Contents

1. Continuations

2. Continuation-Passing Style (CPS)

3. Interpreter of FAE in CPS
Addition and Multiplication
Function Application

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 3 / 44

Contents

1. Continuations

2. Continuation-Passing Style (CPS)

3. Interpreter of FAE in CPS
Addition and Multiplication
Function Application

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 4 / 44

Continuations
Many real-world programming languages support control statements to
change the control-flow of a program.

For example, C++ supports break, continue, and return statements:

int sumEvenUntilZero(int xs[], int len) {
if (len <= 0) return 0; // directly return 0 if len <= 0
int sum = 0;
for (int i = 0; i < len; i++) {

if (xs[i] == 0) break; // stop the loop if xs[i] == 0
if (xs[i] % 2 == 1) continue; // skip the rest if xs[i] is odd
sum += xs[i];

}
return sum; // finally return the sum

}
int xs[] = {4, 1, 3, 2, 0, 6, 5, 8};
sumEvenUntilZero(xs, 8); // 4 + 2 = 6

How can we represent them in functional languages? Continuations!

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 5 / 44

Continuations
Many real-world programming languages support control statements to
change the control-flow of a program.

For example, C++ supports break, continue, and return statements:

int sumEvenUntilZero(int xs[], int len) {
if (len <= 0) return 0; // directly return 0 if len <= 0
int sum = 0;
for (int i = 0; i < len; i++) {

if (xs[i] == 0) break; // stop the loop if xs[i] == 0
if (xs[i] % 2 == 1) continue; // skip the rest if xs[i] is odd
sum += xs[i];

}
return sum; // finally return the sum

}
int xs[] = {4, 1, 3, 2, 0, 6, 5, 8};
sumEvenUntilZero(xs, 8); // 4 + 2 = 6

How can we represent them in functional languages?

Continuations!

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 5 / 44

Continuations
Many real-world programming languages support control statements to
change the control-flow of a program.

For example, C++ supports break, continue, and return statements:

int sumEvenUntilZero(int xs[], int len) {
if (len <= 0) return 0; // directly return 0 if len <= 0
int sum = 0;
for (int i = 0; i < len; i++) {

if (xs[i] == 0) break; // stop the loop if xs[i] == 0
if (xs[i] % 2 == 1) continue; // skip the rest if xs[i] is odd
sum += xs[i];

}
return sum; // finally return the sum

}
int xs[] = {4, 1, 3, 2, 0, 6, 5, 8};
sumEvenUntilZero(xs, 8); // 4 + 2 = 6

How can we represent them in functional languages? Continuations!

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 5 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)

2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)

3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)

4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)

5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Intuitively, a continuation represents the rest of the computation.

For example, consider the following FAE expression:

/* FAE */
(1 + 3) * 5

It implicitly represents the following computation:

1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

The continuation of k-th step is the steps from (k + 1)-th to the last one.

For instance, the continuation of the 3rd step is the 4th and 5th steps.
COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 6 / 44

Continuations
Can we explicitly represent the continuations in the expression?

Yes! Let’s represent the continuation of the k-th step as a function that
• takes the result of the k-th step as an argument and
• performs the (k + 1)-th to the last steps.

If e′ is the current evaluation part in the expression e:

e = (. . . e′ . . .)

we can revise it as:
(λx.(. . . x . . .))(e′)

where λx.(. . . x . . .) is the continuation of e′.

Let’s explicitly represent the continuations of the previous example:

/* FAE */
(1 + 3) * 5

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 7 / 44

Continuations
Can we explicitly represent the continuations in the expression?

Yes! Let’s represent the continuation of the k-th step as a function that
• takes the result of the k-th step as an argument and
• performs the (k + 1)-th to the last steps.

If e′ is the current evaluation part in the expression e:

e = (. . . e′ . . .)

we can revise it as:
(λx.(. . . x . . .))(e′)

where λx.(. . . x . . .) is the continuation of e′.

Let’s explicitly represent the continuations of the previous example:

/* FAE */
(1 + 3) * 5

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 7 / 44

Continuations
Can we explicitly represent the continuations in the expression?

Yes! Let’s represent the continuation of the k-th step as a function that
• takes the result of the k-th step as an argument and
• performs the (k + 1)-th to the last steps.

If e′ is the current evaluation part in the expression e:

e = (. . . e′ . . .)

we can revise it as:
(λx.(. . . x . . .))(e′)

where λx.(. . . x . . .) is the continuation of e′.

Let’s explicitly represent the continuations of the previous example:

/* FAE */
(1 + 3) * 5

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 7 / 44

Continuations
Can we explicitly represent the continuations in the expression?

Yes! Let’s represent the continuation of the k-th step as a function that
• takes the result of the k-th step as an argument and
• performs the (k + 1)-th to the last steps.

If e′ is the current evaluation part in the expression e:

e = (. . . e′ . . .)

we can revise it as:
(λx.(. . . x . . .))(e′)

where λx.(. . . x . . .) is the continuation of e′.

Let’s explicitly represent the continuations of the previous example:

/* FAE */
(1 + 3) * 5

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 7 / 44

Continuations
1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

/* FAE */
(1 + 3) * 5

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 8 / 44

Continuations
1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

/* FAE */
{

x1 => (x1 + 3) * 5 // step 2-5 (continuation of step 1)
}(1) // step 1

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 9 / 44

Continuations
1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

/* FAE */
{

x1 => {
x2 => (x1 + x2) * 5 // step 3-5 (continuation of step 2)

}(3) // step 2
}(1) // step 1

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 10 / 44

Continuations
1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

/* FAE */
{

x1 => {
x2 => {

x3 => x3 * 5 // step 4-5 (continuation of step 3)
}(x1 + x2) // step 3

}(3) // step 2
}(1) // step 1

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 11 / 44

Continuations
1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

/* FAE */
{

x1 => {
x2 => {

x3 => {
x4 => x3 * x4 // step 5 (continuation of step 4)

}(5) // step 4
}(x1 + x2) // step 3

}(3) // step 2
}(1) // step 1

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 12 / 44

Continuations
1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

/* FAE */
{

x1 => {
x2 => {

x3 => {
x4 => {

x5 => x5 // no more steps (continuation of step 5)
}(x3 * x4) // step 5

}(5) // step 4
}(x1 + x2) // step 3

}(3) // step 2
}(1) // step 1

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 13 / 44

Continuations
1 Evaluate 1. (Result: 1)
2 Evaluate 3. (Result: 3)
3 Add the results of step 1 and 2 . (Result: 1 + 3 = 4)
4 Evaluate 5. (Result: 5)
5 Multiply the results of step 3 and 4 . (Result: 4 * 5 = 20)

/* FAE */
val x1 = 1; // step 1
val x2 = 3; // step 2
val x3 = x1 + x2; // step 3
val x4 = 5; // step 4
val x5 = x3 * x4; // step 5
x5 // no more steps (continuation of step 5)

by using the syntactic sugar for variable definitions (val).

DJval x = e; e′K = (λx.DJe′K)(DJeK)

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 14 / 44

Contents

1. Continuations

2. Continuation-Passing Style (CPS)

3. Interpreter of FAE in CPS
Addition and Multiplication
Function Application

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 15 / 44

Continuation-Passing Style (CPS)
So far, we implement functions in direct style, where the result of a
function is returned to the caller.

For example, the following Scala sum function is written in direct style:

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

sum(3) * 5 // (1 + 2 + 3) * 5 = 30

Continuation-passing style (CPS) is a style of programming that passes
the continuation as an explicit parameter to a function and calls it to give
the result to the continuation. Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int = ???

sumCPS(3, x => x * 5) // (1 + 2 + 3) * 5 = 30

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 16 / 44

Continuation-Passing Style (CPS)
So far, we implement functions in direct style, where the result of a
function is returned to the caller.

For example, the following Scala sum function is written in direct style:

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

sum(3) * 5 // (1 + 2 + 3) * 5 = 30

Continuation-passing style (CPS) is a style of programming that passes
the continuation as an explicit parameter to a function and calls it to give
the result to the continuation.

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int = ???

sumCPS(3, x => x * 5) // (1 + 2 + 3) * 5 = 30

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 16 / 44

Continuation-Passing Style (CPS)
So far, we implement functions in direct style, where the result of a
function is returned to the caller.

For example, the following Scala sum function is written in direct style:

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

sum(3) * 5 // (1 + 2 + 3) * 5 = 30

Continuation-passing style (CPS) is a style of programming that passes
the continuation as an explicit parameter to a function and calls it to give
the result to the continuation. Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int = ???

sumCPS(3, x => x * 5) // (1 + 2 + 3) * 5 = 30

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 16 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int = ???

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 17 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int = k(sum(n))

It is not the correct implementation of sum in CPS because it depends on
the original sum function.

Let’s replace sum(n) with the body of sum.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 18 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int = k(sum(n))

It is not the correct implementation of sum in CPS because it depends on
the original sum function.

Let’s replace sum(n) with the body of sum.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 18 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int = k(

if (n <= 1) 1
else sum(n - 1) + n

)

Let’s utilize the following equivalence:

e0(if (e1) e2 else e3) == if (e1) e0(e2) else e0(e3)

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 19 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int = k(

if (n <= 1) 1
else sum(n - 1) + n

)

Let’s utilize the following equivalence:

e0(if (e1) e2 else e3) == if (e1) e0(e2) else e0(e3)

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 19 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int =

if (n <= 1) k(1)
else k(sum(n - 1) + n)

But, it still depends on the original sum function.

Let’s utilize the following equivalence:

k(sum(n - 1) + n) == (x => k(x + n))(sum(n - 1))
== sumCPS(n - 1, x => k(x + n))

because x => k(x + n) is the continuation of sum(n - 1).

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 20 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int =

if (n <= 1) k(1)
else k(sum(n - 1) + n)

But, it still depends on the original sum function.

Let’s utilize the following equivalence:

k(sum(n - 1) + n) == (x => k(x + n))(sum(n - 1))
== sumCPS(n - 1, x => k(x + n))

because x => k(x + n) is the continuation of sum(n - 1).
COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 20 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int =

if (n <= 1) k(1)
else sumCPS(n - 1, x => k(x + n))

If all functions are written in CPS, a program satisfies the properties:
• Every function takes a continuation as an explicit parameter.
• A continuation is used at most once in a function body.
• Every function call is in a tail position. (tail-call optimization)
• Every function ends with a function call.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 21 / 44

Continuation-Passing Style (CPS)

def sum(n: Int): Int =
if (n <= 1) 1
else sum(n - 1) + n

Let’s rewrite the sum function in CPS:

type Cont = Int => Int
def sumCPS(n: Int, k: Cont): Int =

if (n <= 1) k(1)
else sumCPS(n - 1, x => k(x + n))

If all functions are written in CPS, a program satisfies the properties:
• Every function takes a continuation as an explicit parameter.
• A continuation is used at most once in a function body.
• Every function call is in a tail position. (tail-call optimization)
• Every function ends with a function call.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 21 / 44

Contents

1. Continuations

2. Continuation-Passing Style (CPS)

3. Interpreter of FAE in CPS
Addition and Multiplication
Function Application

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 22 / 44

Interpreter of FAE in CPS
The original interpreter of FAE is written in direct style, and
continuations of the evaluation of expressions are implicitly represented.

def interp(expr: Expr, env: Env): Value = expr match
case Num(n) => NumV(n)
case Add(l, r) => numAdd(interp(l, env), interp(r, env))
case Mul(l, r) => numMul(interp(l, env), interp(r, env))
case Id(x) => env.getOrElse(x, error(s"free identifier: $x"))
case Fun(p, b) => CloV(p, b, env)
case App(f, a) => interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

To explicitly represent continuations of the evaluation of each expression
in the interpreter of FAE, we need to modify the interpreter in CPS:

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = ???

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 23 / 44

Interpreter of FAE in CPS
The original interpreter of FAE is written in direct style, and
continuations of the evaluation of expressions are implicitly represented.

def interp(expr: Expr, env: Env): Value = expr match
case Num(n) => NumV(n)
case Add(l, r) => numAdd(interp(l, env), interp(r, env))
case Mul(l, r) => numMul(interp(l, env), interp(r, env))
case Id(x) => env.getOrElse(x, error(s"free identifier: $x"))
case Fun(p, b) => CloV(p, b, env)
case App(f, a) => interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

To explicitly represent continuations of the evaluation of each expression
in the interpreter of FAE, we need to modify the interpreter in CPS:

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = ???

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 23 / 44

Interpreter of FAE in CPS
The original interpreter of FAE is written in direct style, and
continuations of the evaluation of expressions are implicitly represented.

def interp(expr: Expr, env: Env): Value = expr match
case Num(n) => NumV(n)
case Add(l, r) => numAdd(interp(l, env), interp(r, env))
case Mul(l, r) => numMul(interp(l, env), interp(r, env))
case Id(x) => env.getOrElse(x, error(s"free identifier: $x"))
case Fun(p, b) => CloV(p, b, env)
case App(f, a) => interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

To explicitly represent continuations of the evaluation of each expression
in the interpreter of FAE, we need to modify the interpreter in CPS:

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value =

k(interp(expr, env))

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 24 / 44

Interpreter of FAE in CPS
The original interpreter of FAE is written in direct style, and
continuations of the evaluation of expressions are implicitly represented.

To explicitly represent continuations of the evaluation of each expression
in the interpreter of FAE, we need to modify the interpreter in CPS:

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = k(expr match

case Num(n) => NumV(n)
case Add(l, r) => numAdd(interp(l, env), interp(r, env))
case Mul(l, r) => numMul(interp(l, env), interp(r, env))
case Id(x) => env.getOrElse(x, error(s"free identifier: $x"))
case Fun(p, b) => CloV(p, b, env)
case App(f, a) => interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

)

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 25 / 44

Interpreter of FAE in CPS
The original interpreter of FAE is written in direct style, and
continuations of the evaluation of expressions are implicitly represented.

To explicitly represent continuations of the evaluation of each expression
in the interpreter of FAE, we need to modify the interpreter in CPS:

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

case Num(n) => k(NumV(n))
case Add(l, r) => k(numAdd(interp(l, env), interp(r, env)))
case Mul(l, r) => k(numMul(interp(l, env), interp(r, env)))
case Id(x) => k(env.getOrElse(x, error(s"free identifier: $x")))
case Fun(p, b) => k(CloV(p, b, env))
case App(f, a) => k(interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

)

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 26 / 44

Interpreter of FAE in CPS
The original interpreter of FAE is written in direct style, and
continuations of the evaluation of expressions are implicitly represented.

To explicitly represent continuations of the evaluation of each expression
in the interpreter of FAE, we need to modify the interpreter in CPS:

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

case Num(n) => k(NumV(n))
case Add(l, r) => k(numAdd(interp(l, env), interp(r, env)))
case Mul(l, r) => k(numMul(interp(l, env), interp(r, env)))
case Id(x) => k(env.getOrElse(x, error(s"free identifier: $x")))
case Fun(p, b) => k(CloV(p, b, env))
case App(f, a) => k(interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

)

Let’s modify the Add, Mul, and App cases because they still use the
original interp function.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 27 / 44

Addition and Multiplication

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case Add(l, r) =>

k(numAdd(interp(l, env), interp(r, env)))
...

The current evaluation part is interp(l, env).

Its continuation is lv => k(numAdd(lv, interp(r, env))).

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 28 / 44

Addition and Multiplication

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case Add(l, r) =>

{
lv => k(numAdd(lv, interp(r, env))) // cont. of `interp(l, env)`

}(interp(l, env))
...

Let’s rewrite it by passing the continuation into interpCPS.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 29 / 44

Addition and Multiplication

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case Add(l, r) =>

interpCPS(l, env, {
lv => k(numAdd(lv, interp(r, env))) // cont. of `interp(l, env)`

})
...

Similarly, the current evaluation part is interp(r, env).

Its continuation is rv => k(numAdd(lv, rv)).

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 30 / 44

Addition and Multiplication

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case Add(l, r) =>

interpCPS(l, env, {
lv => {

rv => k(numAdd(lv, rv)) // cont. of `interp(r, env)`
}(interp(r, env))

})
...

Let’s rewrite it by passing the continuation into interpCPS.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 31 / 44

Addition and Multiplication

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case Add(l, r) =>

interpCPS(l, env, {
lv => interpCPS(r, env, {

rv => k(numAdd(lv, rv)) // cont. of `interp(r, env)`
})

})
...

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 32 / 44

Addition and Multiplication

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case Add(l, r) =>

interpCPS(l, env, {
lv => interpCPS(r, env, {

rv => k(numAdd(lv, rv))
})

})
case Mul(l, r) =>

interpCPS(l, env, {
lv => interpCPS(r, env, {

rv => k(numMul(lv, rv))
})

})
...

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 33 / 44

Function Application

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case App(f, a) => k(interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

)
...

In a similar way, we can rewrite function application case.

The current evaluation part is interp(f, env).

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 34 / 44

Function Application

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case App(f, a) => interpCPS(f, env, {

// cont. of `interp(f, env)`
fv => k(fv match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

)
})
...

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 35 / 44

Function Application

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case App(f, a) => interpCPS(f, env, fv => k(fv match

case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(a, env)))
case v => error(s"not a function: ${v.str}")

))
...

Let’s move the continuation invocation k(...) into the inside of the
match expression.

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 36 / 44

Function Application

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case App(f, a) => interpCPS(f, env, fv => fv match

case CloV(p, b, fenv) => k(interp(b, fenv + (p -> interp(a, env))))
case v => error(s"not a function: ${v.str}")

)
...

We do not need to wrap error(...) with k because it does not return a
value but throws an exception.

Now, the current evaluation part is interp(a, env).

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 37 / 44

Function Application

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case App(f, a) => interpCPS(f, env, fv => fv match

case CloV(p, b, fenv) =>
interpCPS(a, env, {

// cont. of `interp(a, env)`
av => k(interp(b, fenv + (p -> av)))

})
case v => error(s"not a function: ${v.str}")

)
...

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 38 / 44

Function Application

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case App(f, a) => interpCPS(f, env, fv => fv match

case CloV(p, b, fenv) =>
interpCPS(a, env, av => k(interp(b, fenv + (p -> av))))

case v => error(s"not a function: ${v.str}")
)
...

Now, the current evaluation part is interp(b, fenv + (p -> av)).

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 39 / 44

Function Application

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case App(f, a) => interpCPS(f, env, fv => fv match

case CloV(p, b, fenv) =>
interpCPS(a, env, av => interpCPS(b, fenv + (p -> av), {

// cont. of `interp(b, fenv + (p -> av))`
k

})
case v => error(s"not a function: ${v.str}")

)
...

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 40 / 44

Function Application

type Cont = Value => Value
def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match

...
case App(f, a) => interpCPS(f, env, fv => fv match

case CloV(p, b, fenv) =>
interpCPS(a, env, av => interpCPS(b, fenv + (p -> av), k)

case v => error(s"not a function: ${v.str}")
)
...

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 41 / 44

Summary

1. Continuations

2. Continuation-Passing Style (CPS)

3. Interpreter of FAE in CPS
Addition and Multiplication
Function Application

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 42 / 44

Claim of Midterm Exam
• The score for the midterm exam will be uploaded to Blackboard by

tomorrow before noon.

• The claim hours are scheduled as follows:

• 10/29 (Tue.) 15:00-17:00

• 10/30 (Wed.) 15:00-17:00

• Place: Room 609A, Science Library Bldg

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 43 / 44

https://kulms.korea.ac.kr/

Next Lecture
• Continuations (2)

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 14 – Continuations (1) October 28, 2024 44 / 44

https://plrg.korea.ac.kr

	Continuations
	Continuation-Passing Style (CPS)
	Interpreter of FAE in CPS
	Addition and Multiplication
	Function Application

