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Recall
• We will learn about continuations with the following topics:

• Continuations (Lecture 14 & 15)
• First-Class Continuations (Lecture 16)
• Compiling with continuations (Lecture 17)

• A continuation represents the rest of the computation.
• Continuation Passing Style (CPS)
• Interpreter of FAE in CPS

• So far, we have defined bit-step operational (natural) semantics
for our languages.

• In this lecture, we define small-step operational (reduction)
semantics of FAE using continuations before moving on to
first-class continuations.
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Recall: Interpreter of FAE in CPS
In the previous lecture, we represented the continuation of each
expression in the interpreter of FAE as a function and implemented the
interpreter in continuation passing style (CPS):

enum Value:
case NumV(number: BigInt)
case CloV(param: String, body: Expr, env: Env)

type Env = Map[String, Value]
type Cont = Value => Value

def interpCPS(expr: Expr, env: Env, k: Cont): Value = ...

Then, how can we define the continuations for the semantics of FAE?

Values V ∋ v ::= n (NumV)
| ⟨λx.e, σ⟩ (CloV)

Environments σ ∈ X fin−→ V (Env)
Continuations = ???
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Recall: Big-Step vs. Small-Step Semantics
The derivation of big-step operational (natural) semantics has a tree
structure, where each derivation describes the whole evaluation of an
expression:

Mul

Num
∅ ⊢ 5 ⇒ 5

Add

Num
∅ ⊢ 1 ⇒ 1

Num
∅ ⊢ 2 ⇒ 2

∅ ⊢ 1 + 2 ⇒ 3
∅ ⊢ 5 * (1 + 2) ⇒ 15

but the derivation of small-step operational (reduction) semantics is
linear and describes each reduction step of an expression:

5 * (1 + 2) → 5 * 3 → 15

It is possible but non-trivial to represent continuations in the big-step
operational (natural) semantics.

Let’s define the small-step operational (reduction) semantics of FAE
to represent continuations.
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Reduction Semantics of FAE

Mul

Num
∅ ⊢ 5 ⇒ 5

Add

Num
∅ ⊢ 1 ⇒ 1

Num
∅ ⊢ 2 ⇒ 2

∅ ⊢ 1 + 2 ⇒ 3
∅ ⊢ 5 * (1 + 2) ⇒ 15

Let’s describe what happens each step of the evaluation of the expression
5 * (1 + 2) using continuation and a value stack:
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Reduction Semantics of FAE
• Big-step operational (natural) semantics:

σ ⊢ e ⇒ v

• Small-step operational (reduction) semantics:

⟨κ || s⟩ → ⟨κ || s⟩

where →∈ (K× S) × (K× S) is a reduction relation between states.

Continuations K ∋ κ ::= □
| (σ ⊢ e) :: κ
| (+) :: κ
| (*) :: κ
| (@) :: κ

Value Stacks S ∋ s ::= ■ | v :: s
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Numbers

def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match
...
case Num(n) => k(NumV(n))

⟨κ || s⟩ → ⟨κ || s⟩

Num ⟨(σ ⊢ n) :: κ || s⟩ → ⟨κ || n :: s⟩
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Addition

def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match
...
case Add(l, r) =>

interpCPS(l, env, {
lv => interpCPS(r, env, {

rv => k(numAdd(lv, rv))
})

})

⟨κ || s⟩ → ⟨κ || s⟩

Add1 ⟨(σ ⊢ e1 + e2) :: κ || s⟩ → ⟨(σ ⊢ e1) :: (σ ⊢ e2) :: (+) :: κ || s⟩

Add2 ⟨(+) :: κ || n2 :: n1 :: s⟩ → ⟨κ || (n1 + n2) :: s⟩
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Multiplication

def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match
...
case Mul(l, r) =>

interpCPS(l, env, {
lv => interpCPS(r, env, {

rv => k(numMul(lv, rv))
})

})

⟨κ || s⟩ → ⟨κ || s⟩

Mul1 ⟨(σ ⊢ e1 * e2) :: κ || s⟩ → ⟨(σ ⊢ e1) :: (σ ⊢ e2) :: (*) :: κ || s⟩

Mul2 ⟨(*) :: κ || n2 :: n1 :: s⟩ → ⟨κ || (n1 × n2) :: s⟩
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Identifier Lookup

def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match
...
case Id(x) => k(lookupId(x, env))

⟨κ || s⟩ → ⟨κ || s⟩

Id ⟨(σ ⊢ x) :: κ || s⟩ → ⟨κ || σ(x) :: s⟩
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Function Definition

def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match
...
case Fun(p, b) => k(CloV(p, b, env))

⟨κ || s⟩ → ⟨κ || s⟩

Fun ⟨(σ ⊢ λx.e) :: κ || s⟩ → ⟨κ || ⟨λx.e, σ⟩ :: s⟩
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Function Application

def interpCPS(expr: Expr, env: Env, k: Cont): Value = expr match
...
case App(f, e) => interpCPS(f, env, v => v match

case CloV(p, b, fenv) =>
interpCPS(e, env, v => {

interpCPS(b, fenv + (p -> v), k)
})

case v => error(s"not a function: ${v.str}")
)

⟨κ || s⟩ → ⟨κ || s⟩

App1⟨(σ ⊢ e1(e2)) :: κ || s⟩ → ⟨(σ ⊢ e1) :: (σ ⊢ e2) :: (@) :: κ || s⟩

App2⟨(@) :: κ || v2 :: ⟨λx.e, σ⟩ :: s⟩ → ⟨(σ[x 7→ v2] ⊢ e) :: κ || s⟩
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Semantic Equivalence
• The reflexive transitive closure (→∗) of (→):

⟨κ || s⟩ →∗ ⟨κ || s⟩

⟨κ || s⟩ →∗ ⟨κ′ || s′⟩ ⟨κ′ || s′⟩ → ⟨κ′′ || s′′⟩
⟨κ || s⟩ →∗ ⟨κ′′ || s′′⟩

• The semantic equivalence between natural and reduction semantics:

∅ ⊢ e ⇒ v ⇐⇒ ⟨(∅ ⊢ e) :: □ || ■⟩ →∗ ⟨□ || v :: ■⟩

More generally, the following are equivalent:

σ ⊢ e ⇒ v ⇐⇒ ⟨(σ ⊢ e) :: κ || s⟩ →∗ ⟨κ || v :: s⟩

for all σ ∈ X fin−→ V, e ∈ E, v ∈ V, κ ∈ K, and s ∈ S.
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Example
Let’s interpret the expression (λx.(1 + x))(2):

⟨ (∅ ⊢ (λx.(1 + x))(2)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ λx.(1 + x)) :: (∅ ⊢ 2) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 2) :: (@) :: □ || ⟨λx.(1 + x),∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 2 :: ⟨λx.(1 + x),∅⟩ :: ■ ⟩
(App2)

→ ⟨ ([x 7→ 2] ⊢ (1 + x)) :: □ || ■ ⟩
(Add1)

→ ⟨ ([x 7→ 2] ⊢ 1) :: ([x 7→ 2] ⊢ x) :: (+) :: □ || ■ ⟩
(Num)

→ ⟨ ([x 7→ 2] ⊢ x) :: (+) :: □ || 1 :: ■ ⟩
(Id)
→ ⟨ (+) :: □ || 2 :: 1 :: ■ ⟩

(Add2)
→ ⟨ □ || 3 :: ■ ⟩

Thus, ⟨(∅ ⊢ (λx.(1 + x))(2)) :: □ || ■⟩ →∗ ⟨□ || 3 :: ■⟩.

It means that the evaluation result of (λx.(1 + x))(2) is 3.
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(Fun)

→ ⟨ (∅ ⊢ 2) :: (@) :: □ || ⟨λx.(1 + x),∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 2 :: ⟨λx.(1 + x),∅⟩ :: ■ ⟩
(App2)

→ ⟨ ([x 7→ 2] ⊢ (1 + x)) :: □ || ■ ⟩
(Add1)

→ ⟨ ([x 7→ 2] ⊢ 1) :: ([x 7→ 2] ⊢ x) :: (+) :: □ || ■ ⟩

(Num)
→ ⟨ ([x 7→ 2] ⊢ x) :: (+) :: □ || 1 :: ■ ⟩

(Id)
→ ⟨ (+) :: □ || 2 :: 1 :: ■ ⟩

(Add2)
→ ⟨ □ || 3 :: ■ ⟩

Thus, ⟨(∅ ⊢ (λx.(1 + x))(2)) :: □ || ■⟩ →∗ ⟨□ || 3 :: ■⟩.

It means that the evaluation result of (λx.(1 + x))(2) is 3.
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First-Order Representations of Continuations
In our new implementation for FAE using CPS, we define continuations
as first-class functions in Scala.

enum Value:
case NumV(number: BigInt)
case CloV(param: String, body: Expr, env: Env)

type Env = Map[String, Value]
type Cont = Value => Value

def interpCPS(expr: Expr, env: Env, k: Cont): Value = ...

How can we define continuations if we want to implement the interpreter
for FAE in CPS using a non-functional language (e.g., C)?

Let’s define the continuations as data structures (e.g., algebraic data
types) in such languages.

We call them the first-order representations of continuations.
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First-Order Representations of Continuations

enum Cont:
case EmptyK
case EvalK(env: Env, expr: Expr, k: Cont)
case AddK(k: Cont)
case MulK(k: Cont)
case AppK(k: Cont)

type Stack = List[Value]

Continuations K ∋ κ ::= □ (EmptyK)
| (σ ⊢ e) :: κ (EvalK)
| (+) :: κ (AddK)
| (*) :: κ (MulK)
| (@) :: κ (AppK)

Value Stacks S ∋ s ::= ■ | v :: s (List[Value])
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First-Order Representations of Continuations
We define a reduce function that takes a state ⟨κ || s⟩ and reduces it to
another state ⟨κ′ || s′⟩ using the reduction relation → we defined before:

⟨κ || s⟩ → ⟨κ′ || s′⟩

def reduce(k: Cont, s: Stack): (Cont, Stack) = ???

And the evalK function iteratively reduces the state until it reaches the
empty continuation □ and returns the single value in the value stack:

def evalK(str: String): String =
import Cont.*
def aux(k: Cont, s: Stack): Value = reduce(k, s) match

case (EmptyK, List(v)) => v
case (k, s) => aux(k, s)

aux(EvalK(Map.empty, Expr(str), EmptyK), List.empty).str

⟨(∅ ⊢ e) :: □ || ■⟩ →∗ ⟨□ || v :: ■⟩
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First-Order Representations of Continuations

def reduce(k: Cont, s: Stack): (Cont, Stack) = (k, s) match
case (EvalK(env, expr, k), s) => expr match

...
case Add(l, r) => (EvalK(env, l, EvalK(env, r, AddK(k))), s)

...
case (AddK(k), r :: l :: s) => (k, numAdd(l, r) :: s)
...

⟨κ || s⟩ → ⟨κ || s⟩

Add1 ⟨(σ ⊢ e1 + e2) :: κ || s⟩ → ⟨(σ ⊢ e1) :: (σ ⊢ e2) :: (+) :: κ || s⟩

Add2 ⟨(+) :: κ || n2 :: n1 :: s⟩ → ⟨κ || (n1 + n2) :: s⟩

Similarly, we can define the reduce function for the other cases.
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Exercise #9

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/fae-cps

• Please see above document on GitHub:
• Implement interpCPS function.
• Implement reduce function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.
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