Lecture 16 — First-Class Continuations

COSE212: Programming Languages

Jihyeok Park

NPLRG

2024 Fall

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Recall ’VNPLRG

e \We will learn about continuations with the following topics:

¢ Continuations (Lecture 14 & 15)
¢ First-Class Continuations (Lecture 16)
® Compiling with continuations (Lecture 17)

e A continuation represents the rest of the computation.

¢ Continuation Passing Style (CPS)
® |nterpreter of FAE in CPS
® Small-step operational (reduction) semantics of FAE

® In this lecture, we will learn first-class continuations and how to
define the control flow changes in a program using them.

e KFAE — FAE with first-class continuations
® |nterpreter and Reduction semantics

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Contents ’VNPLRG

1. First-Class Continuations

2. KFAE - FAE with First-Class Continuations
Concrete/Abstract Syntax

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

4. Control Statements

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Contents ’VNPLRG

1. First-Class Continuations

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Recall: First-Class Citizen 7VNPLRG

In a programming language, an entity is said to be first-class citizen if it
is treated as a value. In other words, it can be

@ assigned to a variable,
® passed as an argument to a function, and
© returned from a function.

For example, Scala supports first-class functions.

def inc(n: Int): Int =n + 1

// 1. We can assign a function to a variable.

val f: Int => Int = inc

// 2. We can pass a function as an argument to a function.
List(1, 2, 3).map(inc) // List(2, 3, 4)
// 3. We can return a function from a function.

def addN(n: Int): Int => Int =m =>n + m

val add3: Int => Int = addN(3)

add3(5) // 3+5=38

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

First-class Continuations 7VNPLRG

Similarly, a first-class continuation means that a continuation is treated
as a value. For example, Racket supports first-class continuations.

In Racket, we can 1) capture the continuation using let/cc and 2)
change the program'’s control flow using the captured continuation.

For example, let's change the control flow of the following program:

; Racket
(* 2 (+ 35))

(Note that Racket uses the prefix notation (e.g., (+ 1 2)) instead of the
infix notation (e.g., 1 + 2).)

by using the let/cc as follows:

; Racket

(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with “let/cc”

Let's compare the evaluation of the two expressions.

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

First-class Continuations 7VNPLRG

The original expression is evaluated in the following order:

; Racket
(x 2 (+ 3 5))
@ Evaluate 2. (Result: 2)
@® Evaluate 3. (Result: 3)
© Evaluate 5. (Result: 5)
O Add the results of step @ and €. (Result: 3 + 5 = 8)
© Multiply the results of step @ and @ - @. (Result: 2 * 8 = 16)
What is the continuation of the expression (+ 3 5)7? Step @.
What is the continuation of the expression 57 Steps @ and @.

Let's 1) capture the continuation of (+ 3 5) (i.e., @) using let/cc
and 2) change the control flow after evaluating 5 by using it as the
continuation of 5 instead of the original one (i.e., @ and @).

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

First-class Continuations 7VNPLRG

We can change the program’s control flow as follows:

; Racket
(*x 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with “let/cc
@ Evaluate 2. (Result: 2)
@® Let k be the continuation of @ — @. (k is Step @)
© Evaluate 3. (Result: 3)
O Evaluate k. (Result: Step @)
O Evaluate 5. (Result: 5)
@ Call the result of step @ with that of @. (Replace Cont.)
@ Add the results of step € and @ - @. (Unreachable)
©® Multiply the results of step @ and @ — @. (Result: 2 * 5 = 10)

It means that
* Step @ defines the continuation of steps @ — @ as a value in k.
e Step @ replaces the continuation of step @ with k.

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

First-class Continuations 7VNPLRG

Some functional languages support first-class continuations.

® Racket
(x 2 (let/cc k (+ 3 (k 5)))) ;2 %x 5 =10
® Ruby
2 * (callcc { |kl 3 + k.call(5)}) #2 %5 =10
® Haskell
do
x <- callCC $ \k -> do
y <- k5
return $ 3 + y
return $ 2 * x -- 2% 5 =10
°

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Contents ’VNPLRG

2. KFAE - FAE with First-Class Continuations
Concrete/Abstract Syntax

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 10 /34

KFAE — FAE with First-Class Continuations 7V PLRG

Now, let's extend FAE into KFAE with a new keyword vcc to capture the
first-class continuations.

/* KFAE %/
2 % { vec k; 3 + k(5) }

Here is another example of KFAE:

/* KFAE x*/
{
vcc done;
val £ = {
vce exit;
2 * done(1 + {
vce k;
exit (k)
»
};
£f(3) * b
}

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 11/34

Concrete/Abstract Syntax
For KFAE, we need to extend expressions of FAE with
@ first-class continuations (vcc)

We can extend the concrete syntax of FAE as follows:

’VNPLRG

// expressions
<expr> ::= ... | "vcc" <id> ";" <expr>

and the abstract syntax of FAE as follows:

Expressions E > e = ... |vccuz; e (Vee)

enum Expr:

// first-class continuations
case Vcc(name: String, body: Expr)

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Contents ’VNPLRG

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 13 /34

KFAE — FAE with First-Class Continuations

’VNPLRG

Then, what is the expected result of the following KFAE expressions?

/* KFAE */

2 x { vcc k; 3 + k(5) }

COSE212 @ Korea University

Lecture 16 — First-Class Continuations

November 4, 2024

14 /34

KFAE — FAE with First-Class Continuations 7V PLRG

Then, what is the expected result of the following KFAE expressions?

/* KFAE */

// k is a continuation can be represented as “x => 2 * x°
2 x { vcc k; 3 + k(5) }

COSE212 @ Korea University

Lecture 16 — First-Class Continuations

November 4, 2024 15 /34

KFAE — FAE with First-Class Continuations 7V PLRG

Then, what is the expected result of the following KFAE expressions?

/* KFAE */

// k is a continuation can be represented as “x => 2 * x°
2% { vec k; 3+ k(5) }// 2 %5 =10

/* KFAE */
{
vcc done;
val £ = {
vce exit;
2 * done(1 + {
vce k;
exit (k)
B
};
£(3) * 5

}

COSE212 @ Korea University

Lecture 16 — First-Class Continuations November 4, 2024 16 /34

KFAE — FAE with First-Class Continuations

Then, what is the expected result of the following KFAE expressions?

’VNPLRG

/* KFAE */
// k is a continuation can
2 % { vec k; 3 + k(5) } //

be represented as “x => 2 * x°
2 x5 =10

/* KFAE */
{
vcc done;
val £ = {
vce exit;
2 * done(1 + {
vce k;
exit (k)

// done

1D)
};
£f(3) * 5
}

]
M

=> X

COSE212 @ Korea University

Lecture 16 — First-Class Continuations

November 4, 2024

17/34

KFAE — FAE with First-Class Continuations 7V PLRG

Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as “x => 2 * x°
2% { vec k; 3+ k(5) }// 2 %5 =10

/* KFAE */
{
vce done; // done
val £ = {
vce exit; // exit =y => val f = y; £(3) * 5
2 * done(1 + {
vce k;
exit (k)
1)
};
£(3) * 5

X => X

}

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 18 /34

KFAE — FAE with First-Class Continuations 7V PLRG

Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as “x => 2 * x°
2% { vec k; 3+ k(5) }// 2 %5 =10
/* KFAE */
{
vce done; // done = x => x
val £ = {
vce exit; // exit =y => val f = y; £(3) * 5
2 * done(1 + {
vece k; // k =z =>val f ={ 2 * done(1 + z) }; £f(3) * 5
exit (k)
B
};
£(3) * 5
¥

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 19 /34

KFAE — FAE with First-Class Continuations 7V PLRG

Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as “x => 2 * x°
2% { vec k; 3+ k(5) }// 2 %5 =10
/* KFAE */
{
vce done; // done = x => x
val £ = {
vce exit; // exit =y => val f = y; £(3) * 5
2 * done(1 + {
vece k; // k =z =>val f ={ 2 * done(1 + z) }; £f(3) * 5
exit (k)
B
};
£(3) * 5
} // 4 (=1+ 3)

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 20/34

Recall: Interpreter and Reduction Sem. for FAE ~ 73PLRG

In the previous lecture, we have defined the first-order representation of
continuations with value stack:

enum Cont:
case EmptyK
case EvalK(env: Env, expr: Expr, k: Cont)
case AddK(k: Cont)
case MulK(k: Cont)
case AppK(k: Cont)

type Stack = List[Value]

Continuations K 5 k =0 (EmptykK)
| (cFe):k (Evalk)
| (+) = (AddK)
| (%) K (Mulk)
[(@ =k (AppK)
Value Stacks S>> s=:=M | v:s (List[Value])

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Recall: Interpreter and Reduction Sem. for FAE ~ 73PLRG

Then, we have defined the reduction relation —€ (K x S) x (K x S)
between states consisting of pairs of continuations and value stacks:

def reduce(k: Cont, s: Stack): (Cont, Stack) = 777

(5[] s) = (W || 8)

And the eval function iteratively reduces the state until it reaches the
empty continuation [J and returns the single value in the value stack:

def eval(str: String): String =
import Cont.*
def aux(k: Cont, s: Stack): Value = reduce(k, s) match
case (EmptyK, List(v)) => v
case (k, s) => aux(k, s)
aux (EvalK(Map.empty, Expr(str), EmptyK), List.empty).str

(@Fe) =0 W =" (O| v:Mm)

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Interpreter and Reduction Semantics for KFAE VPLRG

Now, let's extend the interpreter and reduction semantics for FAE to
KFAE by adding the first-class continuations.

First, we need to extend the values of FAE with continuation values
consisting of pairs of continuations and value stacks:

// values

enum Value:
case NumV(number: BigInt)
case CloV(param: String, body: Expr, env: Env)
case ContV(cont: Cont, stack: Stack)

Values V3 v iu=n (NumV)

| (\x.e,o) (CloV)

| (k|| s) (ContV)
Then, let's fill out the missing cases in the reduce function and reduction
rules for — in the reduction semantics of KFAE.

COSE212 @ Korea University

Lecture 16 — First-Class Continuations November 4, 2024 23 /34

First-Class Continuations 7VNPLRG

def reduce(k: Cont, s: Stack): (Cont, Stack) = (k, s) match
case (EvalK(env, expr, k), s) => expr match

case Vcc(x, b) => (EvalK(env + (x -> ContV(k, s)), b, k), s)

(| s) = (5 || 5)]

Vee ((oFveca;e)uklls) — ((olz— (k] s)Fe):rl]ls)

It defines a new immutable binding = in the environment o that maps to a
continuation value (x || s), and then evaluates the body expression e in
the extended environment o[z — (k || s)].

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 24 /34

Function Application 7NPLRG

def reduce(k: Cont, s: Stack): (Cont, Stack) = (k, s) match
case (EvalK(env, expr, k), s) => expr match

case App(f, e) => (EvalK(env, f, EvalK(env, e, AppK(k))), s)

case (AppK(k), a :: f :: s) => f match
case CloV(p, b, fenv) => (EvalK(fenv + (p -> a), b, k), s)
case ContV(kl, s1) => (k1, a :: sl)
case Vv

=> error(s"not a function: ${v.str}")

(k11 s) = (k1] s)]

App, ((cFei(e)) =kl) = ((oke)(ockeg) (0 k| s)
App, (@) =k || va: (M\xeyo) i s) — ((ofzx = wve]be) k| s)
App, . (@) ik [[vg i (k|| 87) ns) — (W' | wgs)

The new App, , rule handles when the function expression evaluates to a
continuation value (k' ||). It changes the control flow to the

continuation ' with the given argument value vy and the value stack s'.
COSE212 @ Korea University

Lecture 16 — First-Class Continuations

November 4, 2024 25/34

Example 1 ’NPLRG

Let's interpret the expression 2 * (vec k; (3 + k(5))):

(Mu N ((@F 2% (vec k; (3+K(5)))) O |||)
(Num) ((@F2): (@BF (veck; B+ K(5)))=(x) =0 || M)
(V:)c) ((@F (vec k; (3+ k(5)))) (*) 0 [[2:m)
(Addl) ((coF (B3+Kk(5))) 2 (%) = [[2::1)
(Num) ((oo F3):: (o0 FK(5)) :: (+) s ()0 [|2: 0)
(App) ((ooFKk(B))::(+) (%) O [[3:2:1)
(Id)l ((cotF k) (oo b bB) (@) (+):: (%) O [[3:2: 1)
iy (20 5) 5 (@5 (45 (9) s (o |l o) 32:m)
= (@ u(+):(x) 0O [|'5:: (ko || so) = 2:1)
(App2,n)
=S ((x) O [[5::2:: 1)
(Mulg) .
- (0O [|10:: 1)

{ oo = [k + (Ko || s0)]
where< ko= (%) 0

so=2:1

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 26 /34

Example 2 ’NPLRG

Let's interpret the expression (Ax.(vcc r; r(x + 1) * 2))(3):

((@F Az.(vee r; r(z + 1) % 2))(3)) = O (|)

(APP1) - .. E3) - -0 lm
(Fun) ((@F Az.(vecr; r(x+1) *x2))) = (@F3):(0) =0 ||)
(N;)m) ((o+3) (@ :: 0O || (Az.€0,2) :: A)
(App) ((@) : [| 3:: (Az.eo,2) M)
(V:c))\ ((ooFvecer; r(x+1)*2):0 [|)
(Mu11) ((o1Fr(x+1)*2):0 [|)
= {(oiFr(@+1) (o1 F2):(¥):0 (|)

(4pp, . i}) -

=S {(okFr)u(oabz+1) (@ (o1 bF2): (%) 0 (|)
(A—>*) ((@) (o1 F2) (%) 0O 4O || MWW)
PRor) (o | 4:m)

veer; r(x +1) * 2
[z — 3]
oo[r — (O || W]

s

0

D

=

0]
—N—

e

1

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 27 /34

Contents ’VNPLRG

4. Control Statements

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 28/34

Control Statements ’NPLRG

Many real-world programming languages support control statements to
change the control-flow of a program.

For example, C++ supports break, continue, and return statements:

int sumEvenUntilZero(int xs[], int len) {
if (len <= 0) return O; // directly return O if len <= 0
int sum = 0;
for (int i = 0; i < len; i++) {

if (xs[i] == 0) break; // stop the loop if xs[i] ==
if (xs[i] % 2 == 1) continue; // skip the rest if xs[i] is odd
sum += xs[i];
}
return sum; // finally return the sum
¥
int xs[] = {4, 1, 3, 2, 0, 6, 5, 8};
sumEvenUntilZero(xs, 8); // 4 +2=6

Let's represent them using first-class continuations!

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Control Statements ’NPLRG

® return statement:

x => body

means

x => { vcc return;
body // return(e) directly returns e to the caller
}

® break and continue statements:

while (cond) body

means

{ vcc break;
while (cond) { vcc continue;
body // continue(e)/break(e) jumps to the next/end of the loop
}
}

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 30/34

Control Statements ’NPLRG

We can represent other control statements similarly, but think for yourself!

exception in Python

try:
x=y/ z

except ZeroDivisionError:
x=0

generator in JavaScript

const foo = function* () { yield 'a'; yield 'b'; yield 'c'; };
let str = '';

for (const ¢ of foo()) { str = str + c; }

str // 'abc'

coroutines in Kotlin

async/await in C#

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Summary ’VPLRG

1. First-Class Continuations

2. KFAE - FAE with First-Class Continuations
Concrete/Abstract Syntax

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

4. Control Statements

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024

Exercise #10 7NPLRG

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/kfae

® Please see above document on GitHub:
® Implement reduce function.

® |t is just an exercise, and you don’t need to submit anything.

® However, some exam questions might be related to this exercise.

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 33/34

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/kfae

Next Lecture ’VNPLRG

e Compiling with Continuations

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 16 — First-Class Continuations November 4, 2024 34 /34

https://plrg.korea.ac.kr

	First-Class Continuations
	KFAE – FAE with First-Class Continuations
	Concrete/Abstract Syntax

	Interpreter and Reduction Semantics for KFAE
	Recall: Interpreter and Reduction Semantics for FAE
	Interpreter and Reduction Semantics for KFAE
	First-Class Continuations
	Function Application
	Example 1
	Example 2

	Control Statements

