
Lecture 16 – First-Class Continuations
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 1 / 34

Recall
• We will learn about continuations with the following topics:

• Continuations (Lecture 14 & 15)
• First-Class Continuations (Lecture 16)
• Compiling with continuations (Lecture 17)

• A continuation represents the rest of the computation.
• Continuation Passing Style (CPS)
• Interpreter of FAE in CPS
• Small-step operational (reduction) semantics of FAE

• In this lecture, we will learn first-class continuations and how to
define the control flow changes in a program using them.

• KFAE – FAE with first-class continuations
• Interpreter and Reduction semantics

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 2 / 34

Recall
• We will learn about continuations with the following topics:

• Continuations (Lecture 14 & 15)
• First-Class Continuations (Lecture 16)
• Compiling with continuations (Lecture 17)

• A continuation represents the rest of the computation.
• Continuation Passing Style (CPS)
• Interpreter of FAE in CPS
• Small-step operational (reduction) semantics of FAE

• In this lecture, we will learn first-class continuations and how to
define the control flow changes in a program using them.

• KFAE – FAE with first-class continuations
• Interpreter and Reduction semantics

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 2 / 34

Recall
• We will learn about continuations with the following topics:

• Continuations (Lecture 14 & 15)
• First-Class Continuations (Lecture 16)
• Compiling with continuations (Lecture 17)

• A continuation represents the rest of the computation.
• Continuation Passing Style (CPS)
• Interpreter of FAE in CPS
• Small-step operational (reduction) semantics of FAE

• In this lecture, we will learn first-class continuations and how to
define the control flow changes in a program using them.

• KFAE – FAE with first-class continuations
• Interpreter and Reduction semantics

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 2 / 34

Contents

1. First-Class Continuations

2. KFAE – FAE with First-Class Continuations
Concrete/Abstract Syntax

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

4. Control Statements

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 3 / 34

Contents

1. First-Class Continuations

2. KFAE – FAE with First-Class Continuations
Concrete/Abstract Syntax

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

4. Control Statements

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 4 / 34

Recall: First-Class Citizen
In a programming language, an entity is said to be first-class citizen if it
is treated as a value.

In other words, it can be
1 assigned to a variable,
2 passed as an argument to a function, and
3 returned from a function.

For example, Scala supports first-class functions.

def inc(n: Int): Int = n + 1
// 1. We can assign a function to a variable.
val f: Int => Int = inc
// 2. We can pass a function as an argument to a function.
List(1, 2, 3).map(inc) // List(2, 3, 4)
// 3. We can return a function from a function.
def addN(n: Int): Int => Int = m => n + m
val add3: Int => Int = addN(3)
add3(5) // 3 + 5 = 8

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 5 / 34

Recall: First-Class Citizen
In a programming language, an entity is said to be first-class citizen if it
is treated as a value. In other words, it can be

1 assigned to a variable,
2 passed as an argument to a function, and
3 returned from a function.

For example, Scala supports first-class functions.

def inc(n: Int): Int = n + 1
// 1. We can assign a function to a variable.
val f: Int => Int = inc
// 2. We can pass a function as an argument to a function.
List(1, 2, 3).map(inc) // List(2, 3, 4)
// 3. We can return a function from a function.
def addN(n: Int): Int => Int = m => n + m
val add3: Int => Int = addN(3)
add3(5) // 3 + 5 = 8

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 5 / 34

Recall: First-Class Citizen
In a programming language, an entity is said to be first-class citizen if it
is treated as a value. In other words, it can be

1 assigned to a variable,
2 passed as an argument to a function, and
3 returned from a function.

For example, Scala supports first-class functions.

def inc(n: Int): Int = n + 1
// 1. We can assign a function to a variable.
val f: Int => Int = inc
// 2. We can pass a function as an argument to a function.
List(1, 2, 3).map(inc) // List(2, 3, 4)
// 3. We can return a function from a function.
def addN(n: Int): Int => Int = m => n + m
val add3: Int => Int = addN(3)
add3(5) // 3 + 5 = 8

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 5 / 34

First-class Continuations
Similarly, a first-class continuation means that a continuation is treated
as a value.

For example, Racket supports first-class continuations.

In Racket, we can 1) capture the continuation using let/cc and 2)
change the program’s control flow using the captured continuation.

For example, let’s change the control flow of the following program:

; Racket
(* 2 (+ 3 5))

(Note that Racket uses the prefix notation (e.g., (+ 1 2)) instead of the
infix notation (e.g., 1 + 2).)

by using the let/cc as follows:

; Racket
(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with `let/cc`

Let’s compare the evaluation of the two expressions.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 6 / 34

First-class Continuations
Similarly, a first-class continuation means that a continuation is treated
as a value. For example, Racket supports first-class continuations.

In Racket, we can 1) capture the continuation using let/cc and 2)
change the program’s control flow using the captured continuation.

For example, let’s change the control flow of the following program:

; Racket
(* 2 (+ 3 5))

(Note that Racket uses the prefix notation (e.g., (+ 1 2)) instead of the
infix notation (e.g., 1 + 2).)

by using the let/cc as follows:

; Racket
(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with `let/cc`

Let’s compare the evaluation of the two expressions.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 6 / 34

First-class Continuations
Similarly, a first-class continuation means that a continuation is treated
as a value. For example, Racket supports first-class continuations.

In Racket, we can 1) capture the continuation using let/cc and 2)
change the program’s control flow using the captured continuation.

For example, let’s change the control flow of the following program:

; Racket
(* 2 (+ 3 5))

(Note that Racket uses the prefix notation (e.g., (+ 1 2)) instead of the
infix notation (e.g., 1 + 2).)

by using the let/cc as follows:

; Racket
(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with `let/cc`

Let’s compare the evaluation of the two expressions.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 6 / 34

First-class Continuations
Similarly, a first-class continuation means that a continuation is treated
as a value. For example, Racket supports first-class continuations.

In Racket, we can 1) capture the continuation using let/cc and 2)
change the program’s control flow using the captured continuation.

For example, let’s change the control flow of the following program:

; Racket
(* 2 (+ 3 5))

(Note that Racket uses the prefix notation (e.g., (+ 1 2)) instead of the
infix notation (e.g., 1 + 2).)

by using the let/cc as follows:

; Racket
(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with `let/cc`

Let’s compare the evaluation of the two expressions.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 6 / 34

First-class Continuations
Similarly, a first-class continuation means that a continuation is treated
as a value. For example, Racket supports first-class continuations.

In Racket, we can 1) capture the continuation using let/cc and 2)
change the program’s control flow using the captured continuation.

For example, let’s change the control flow of the following program:

; Racket
(* 2 (+ 3 5))

(Note that Racket uses the prefix notation (e.g., (+ 1 2)) instead of the
infix notation (e.g., 1 + 2).)

by using the let/cc as follows:

; Racket
(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with `let/cc`

Let’s compare the evaluation of the two expressions.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 6 / 34

First-class Continuations
Similarly, a first-class continuation means that a continuation is treated
as a value. For example, Racket supports first-class continuations.

In Racket, we can 1) capture the continuation using let/cc and 2)
change the program’s control flow using the captured continuation.

For example, let’s change the control flow of the following program:

; Racket
(* 2 (+ 3 5))

(Note that Racket uses the prefix notation (e.g., (+ 1 2)) instead of the
infix notation (e.g., 1 + 2).)

by using the let/cc as follows:

; Racket
(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with `let/cc`

Let’s compare the evaluation of the two expressions.
COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 6 / 34

First-class Continuations
The original expression is evaluated in the following order:

; Racket
(* 2 (+ 3 5))

1 Evaluate 2. (Result: 2)
2 Evaluate 3. (Result: 3)
3 Evaluate 5. (Result: 5)
4 Add the results of step 2 and 3 . (Result: 3 + 5 = 8)
5 Multiply the results of step 1 and 2 – 4 . (Result: 2 * 8 = 16)

What is the continuation of the expression (+ 3 5)? Step 5 .

What is the continuation of the expression 5? Steps 4 and 5 .

Let’s 1) capture the continuation of (+ 3 5) (i.e., 5) using let/cc
and 2) change the control flow after evaluating 5 by using it as the
continuation of 5 instead of the original one (i.e., 4 and 5).

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 7 / 34

First-class Continuations
The original expression is evaluated in the following order:

; Racket
(* 2 (+ 3 5))

1 Evaluate 2. (Result: 2)
2 Evaluate 3. (Result: 3)
3 Evaluate 5. (Result: 5)
4 Add the results of step 2 and 3 . (Result: 3 + 5 = 8)
5 Multiply the results of step 1 and 2 – 4 . (Result: 2 * 8 = 16)

What is the continuation of the expression (+ 3 5)?

Step 5 .

What is the continuation of the expression 5? Steps 4 and 5 .

Let’s 1) capture the continuation of (+ 3 5) (i.e., 5) using let/cc
and 2) change the control flow after evaluating 5 by using it as the
continuation of 5 instead of the original one (i.e., 4 and 5).

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 7 / 34

First-class Continuations
The original expression is evaluated in the following order:

; Racket
(* 2 (+ 3 5))

1 Evaluate 2. (Result: 2)
2 Evaluate 3. (Result: 3)
3 Evaluate 5. (Result: 5)
4 Add the results of step 2 and 3 . (Result: 3 + 5 = 8)
5 Multiply the results of step 1 and 2 – 4 . (Result: 2 * 8 = 16)

What is the continuation of the expression (+ 3 5)? Step 5 .

What is the continuation of the expression 5? Steps 4 and 5 .

Let’s 1) capture the continuation of (+ 3 5) (i.e., 5) using let/cc
and 2) change the control flow after evaluating 5 by using it as the
continuation of 5 instead of the original one (i.e., 4 and 5).

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 7 / 34

First-class Continuations
The original expression is evaluated in the following order:

; Racket
(* 2 (+ 3 5))

1 Evaluate 2. (Result: 2)
2 Evaluate 3. (Result: 3)
3 Evaluate 5. (Result: 5)
4 Add the results of step 2 and 3 . (Result: 3 + 5 = 8)
5 Multiply the results of step 1 and 2 – 4 . (Result: 2 * 8 = 16)

What is the continuation of the expression (+ 3 5)? Step 5 .

What is the continuation of the expression 5?

Steps 4 and 5 .

Let’s 1) capture the continuation of (+ 3 5) (i.e., 5) using let/cc
and 2) change the control flow after evaluating 5 by using it as the
continuation of 5 instead of the original one (i.e., 4 and 5).

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 7 / 34

First-class Continuations
The original expression is evaluated in the following order:

; Racket
(* 2 (+ 3 5))

1 Evaluate 2. (Result: 2)
2 Evaluate 3. (Result: 3)
3 Evaluate 5. (Result: 5)
4 Add the results of step 2 and 3 . (Result: 3 + 5 = 8)
5 Multiply the results of step 1 and 2 – 4 . (Result: 2 * 8 = 16)

What is the continuation of the expression (+ 3 5)? Step 5 .

What is the continuation of the expression 5? Steps 4 and 5 .

Let’s 1) capture the continuation of (+ 3 5) (i.e., 5) using let/cc
and 2) change the control flow after evaluating 5 by using it as the
continuation of 5 instead of the original one (i.e., 4 and 5).

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 7 / 34

First-class Continuations
The original expression is evaluated in the following order:

; Racket
(* 2 (+ 3 5))

1 Evaluate 2. (Result: 2)
2 Evaluate 3. (Result: 3)
3 Evaluate 5. (Result: 5)
4 Add the results of step 2 and 3 . (Result: 3 + 5 = 8)
5 Multiply the results of step 1 and 2 – 4 . (Result: 2 * 8 = 16)

What is the continuation of the expression (+ 3 5)? Step 5 .

What is the continuation of the expression 5? Steps 4 and 5 .

Let’s 1) capture the continuation of (+ 3 5) (i.e., 5) using let/cc
and 2) change the control flow after evaluating 5 by using it as the
continuation of 5 instead of the original one (i.e., 4 and 5).

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 7 / 34

First-class Continuations
We can change the program’s control flow as follows:

; Racket
(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with `let/cc`

1 Evaluate 2. (Result: 2)
2 Let k be the continuation of 2 – 7 . (k is Step 8)
3 Evaluate 3. (Result: 3)
4 Evaluate k. (Result: Step 8)
5 Evaluate 5. (Result: 5)
6 Call the result of step 4 with that of 5 . (Replace Cont.)
7 Add the results of step 3 and 4 – 6 . (Unreachable)
8 Multiply the results of step 1 and 2 – 7 . (Result: 2 * 5 = 10)

It means that
• Step 2 defines the continuation of steps 2 – 7 as a value in k.
• Step 6 replaces the continuation of step 5 with k.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 8 / 34

First-class Continuations
We can change the program’s control flow as follows:

; Racket
(* 2 (let/cc k (+ 3 (k 5)))) ; first-class continuation with `let/cc`

1 Evaluate 2. (Result: 2)
2 Let k be the continuation of 2 – 7 . (k is Step 8)
3 Evaluate 3. (Result: 3)
4 Evaluate k. (Result: Step 8)
5 Evaluate 5. (Result: 5)
6 Call the result of step 4 with that of 5 . (Replace Cont.)
7 Add the results of step 3 and 4 – 6 . (Unreachable)
8 Multiply the results of step 1 and 2 – 7 . (Result: 2 * 5 = 10)

It means that
• Step 2 defines the continuation of steps 2 – 7 as a value in k.
• Step 6 replaces the continuation of step 5 with k.
COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 8 / 34

First-class Continuations
Some functional languages support first-class continuations.

• Racket

(* 2 (let/cc k (+ 3 (k 5)))) ; 2 * 5 = 10

• Ruby

2 * (callcc { |k| 3 + k.call(5)}) # 2 * 5 = 10

• Haskell

do
x <- callCC $ \k -> do

y <- k 5
return $ 3 + y

return $ 2 * x -- 2 * 5 = 10

• . . .

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 9 / 34

Contents

1. First-Class Continuations

2. KFAE – FAE with First-Class Continuations
Concrete/Abstract Syntax

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

4. Control Statements

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 10 / 34

KFAE – FAE with First-Class Continuations
Now, let’s extend FAE into KFAE with a new keyword vcc to capture the
first-class continuations.

/* KFAE */
2 * { vcc k; 3 + k(5) }

Here is another example of KFAE:

/* KFAE */
{

vcc done;
val f = {

vcc exit;
2 * done(1 + {

vcc k;
exit(k)

})
};
f(3) * 5

}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 11 / 34

KFAE – FAE with First-Class Continuations
Now, let’s extend FAE into KFAE with a new keyword vcc to capture the
first-class continuations.

/* KFAE */
2 * { vcc k; 3 + k(5) }

Here is another example of KFAE:

/* KFAE */
{

vcc done;
val f = {

vcc exit;
2 * done(1 + {

vcc k;
exit(k)

})
};
f(3) * 5

}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 11 / 34

Concrete/Abstract Syntax
For KFAE, we need to extend expressions of FAE with

1 first-class continuations (vcc)

We can extend the concrete syntax of FAE as follows:

// expressions
<expr> ::= ... | "vcc" <id> ";" <expr>

and the abstract syntax of FAE as follows:

Expressions E ∋ e ::= . . . | vcc x; e (Vcc)

enum Expr:
...
// first-class continuations
case Vcc(name: String, body: Expr)

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 12 / 34

Concrete/Abstract Syntax
For KFAE, we need to extend expressions of FAE with

1 first-class continuations (vcc)

We can extend the concrete syntax of FAE as follows:

// expressions
<expr> ::= ... | "vcc" <id> ";" <expr>

and the abstract syntax of FAE as follows:

Expressions E ∋ e ::= . . . | vcc x; e (Vcc)

enum Expr:
...
// first-class continuations
case Vcc(name: String, body: Expr)

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 12 / 34

Concrete/Abstract Syntax
For KFAE, we need to extend expressions of FAE with

1 first-class continuations (vcc)

We can extend the concrete syntax of FAE as follows:

// expressions
<expr> ::= ... | "vcc" <id> ";" <expr>

and the abstract syntax of FAE as follows:

Expressions E ∋ e ::= . . . | vcc x; e (Vcc)

enum Expr:
...
// first-class continuations
case Vcc(name: String, body: Expr)

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 12 / 34

Contents

1. First-Class Continuations

2. KFAE – FAE with First-Class Continuations
Concrete/Abstract Syntax

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

4. Control Statements

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 13 / 34

KFAE – FAE with First-Class Continuations
Then, what is the expected result of the following KFAE expressions?

/* KFAE */

2 * { vcc k; 3 + k(5) }

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 14 / 34

KFAE – FAE with First-Class Continuations
Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as `x => 2 * x`
2 * { vcc k; 3 + k(5) }

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 15 / 34

KFAE – FAE with First-Class Continuations
Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as `x => 2 * x`
2 * { vcc k; 3 + k(5) } // 2 * 5 = 10

/* KFAE */
{

vcc done;
val f = {

vcc exit;
2 * done(1 + {

vcc k;
exit(k)

})
};
f(3) * 5

}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 16 / 34

KFAE – FAE with First-Class Continuations
Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as `x => 2 * x`
2 * { vcc k; 3 + k(5) } // 2 * 5 = 10

/* KFAE */
{

vcc done;
val f = {

vcc exit;
2 * done(1 + {

vcc k;
exit(k)

})
};
f(3) * 5

}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 16 / 34

KFAE – FAE with First-Class Continuations
Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as `x => 2 * x`
2 * { vcc k; 3 + k(5) } // 2 * 5 = 10

/* KFAE */
{

vcc done; // done = x => x
val f = {

vcc exit;
2 * done(1 + {

vcc k;
exit(k)

})
};
f(3) * 5

}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 17 / 34

KFAE – FAE with First-Class Continuations
Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as `x => 2 * x`
2 * { vcc k; 3 + k(5) } // 2 * 5 = 10

/* KFAE */
{

vcc done; // done = x => x
val f = {

vcc exit; // exit = y => val f = y; f(3) * 5
2 * done(1 + {

vcc k;
exit(k)

})
};
f(3) * 5

}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 18 / 34

KFAE – FAE with First-Class Continuations
Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as `x => 2 * x`
2 * { vcc k; 3 + k(5) } // 2 * 5 = 10

/* KFAE */
{

vcc done; // done = x => x
val f = {

vcc exit; // exit = y => val f = y; f(3) * 5
2 * done(1 + {

vcc k; // k = z => val f = { 2 * done(1 + z) }; f(3) * 5
exit(k)

})
};
f(3) * 5

}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 19 / 34

KFAE – FAE with First-Class Continuations
Then, what is the expected result of the following KFAE expressions?

/* KFAE */
// k is a continuation can be represented as `x => 2 * x`
2 * { vcc k; 3 + k(5) } // 2 * 5 = 10

/* KFAE */
{

vcc done; // done = x => x
val f = {

vcc exit; // exit = y => val f = y; f(3) * 5
2 * done(1 + {

vcc k; // k = z => val f = { 2 * done(1 + z) }; f(3) * 5
exit(k)

})
};
f(3) * 5

} // 4 (= 1 + 3)

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 20 / 34

Recall: Interpreter and Reduction Sem. for FAE
In the previous lecture, we have defined the first-order representation of
continuations with value stack:

enum Cont:
case EmptyK
case EvalK(env: Env, expr: Expr, k: Cont)
case AddK(k: Cont)
case MulK(k: Cont)
case AppK(k: Cont)

type Stack = List[Value]

Continuations K ∋ κ ::= □ (EmptyK)
| (σ ⊢ e) :: κ (EvalK)
| (+) :: κ (AddK)
| (*) :: κ (MulK)
| (@) :: κ (AppK)

Value Stacks S ∋ s ::= ■ | v :: s (List[Value])

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 21 / 34

Recall: Interpreter and Reduction Sem. for FAE
Then, we have defined the reduction relation →∈ (K × S) × (K × S)
between states consisting of pairs of continuations and value stacks:

def reduce(k: Cont, s: Stack): (Cont, Stack) = ???

⟨κ || s⟩ → ⟨κ′ || s′⟩

And the eval function iteratively reduces the state until it reaches the
empty continuation □ and returns the single value in the value stack:

def eval(str: String): String =
import Cont.*
def aux(k: Cont, s: Stack): Value = reduce(k, s) match

case (EmptyK, List(v)) => v
case (k, s) => aux(k, s)

aux(EvalK(Map.empty, Expr(str), EmptyK), List.empty).str

⟨(∅ ⊢ e) :: □ || ■⟩ →∗ ⟨□ || v :: ■⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 22 / 34

Recall: Interpreter and Reduction Sem. for FAE
Then, we have defined the reduction relation →∈ (K × S) × (K × S)
between states consisting of pairs of continuations and value stacks:

def reduce(k: Cont, s: Stack): (Cont, Stack) = ???

⟨κ || s⟩ → ⟨κ′ || s′⟩

And the eval function iteratively reduces the state until it reaches the
empty continuation □ and returns the single value in the value stack:

def eval(str: String): String =
import Cont.*
def aux(k: Cont, s: Stack): Value = reduce(k, s) match

case (EmptyK, List(v)) => v
case (k, s) => aux(k, s)

aux(EvalK(Map.empty, Expr(str), EmptyK), List.empty).str

⟨(∅ ⊢ e) :: □ || ■⟩ →∗ ⟨□ || v :: ■⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 22 / 34

Interpreter and Reduction Semantics for KFAE
Now, let’s extend the interpreter and reduction semantics for FAE to
KFAE by adding the first-class continuations.

First, we need to extend the values of FAE with continuation values
consisting of pairs of continuations and value stacks:

// values
enum Value:

case NumV(number: BigInt)
case CloV(param: String, body: Expr, env: Env)
case ContV(cont: Cont, stack: Stack)

Values V ∋ v ::= n (NumV)
| ⟨λx.e, σ⟩ (CloV)
| ⟨κ || s⟩ (ContV)

Then, let’s fill out the missing cases in the reduce function and reduction
rules for → in the reduction semantics of KFAE.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 23 / 34

First-Class Continuations

def reduce(k: Cont, s: Stack): (Cont, Stack) = (k, s) match
case (EvalK(env, expr, k), s) => expr match

...
case Vcc(x, b) => (EvalK(env + (x -> ContV(k, s)), b, k), s)

⟨κ || s⟩ → ⟨κ || s⟩

Vcc ⟨(σ ⊢ vcc x; e) :: κ || s⟩ → ⟨(σ[x 7→ ⟨κ || s⟩] ⊢ e) :: κ || s⟩

It defines a new immutable binding x in the environment σ that maps to a
continuation value ⟨κ || s⟩, and then evaluates the body expression e in
the extended environment σ[x 7→ ⟨κ || s⟩].

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 24 / 34

Function Application

def reduce(k: Cont, s: Stack): (Cont, Stack) = (k, s) match
case (EvalK(env, expr, k), s) => expr match

...
case App(f, e) => (EvalK(env, f, EvalK(env, e, AppK(k))), s)

...
case (AppK(k), a :: f :: s) => f match

case CloV(p, b, fenv) => (EvalK(fenv + (p -> a), b, k), s)
case ContV(k1, s1) => (k1, a :: s1)
case v => error(s"not a function: ${v.str}")

⟨κ || s⟩ → ⟨κ || s⟩

App1 ⟨(σ ⊢ e1(e2)) :: κ || s⟩ → ⟨(σ ⊢ e1) :: (σ ⊢ e2) :: (@) :: κ || s⟩
App2,λ ⟨(@) :: κ || v2 :: ⟨λx.e, σ⟩ :: s⟩ → ⟨(σ[x 7→ v2] ⊢ e) :: κ || s⟩
App2,κ ⟨(@) :: κ || v2 :: ⟨κ′ || s′⟩ :: s⟩ → ⟨κ′ || v2 :: s′⟩

The new App2,κ rule handles when the function expression evaluates to a
continuation value ⟨κ′ || s′⟩. It changes the control flow to the
continuation κ′ with the given argument value v2 and the value stack s′.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 25 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩
(Add1)

→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩
(Num)

→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(App1)

→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩

(Mul1)
→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩

(Num)
→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩

(Vcc)
→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩

(Add1)
→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩

(Num)
→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(App1)
→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩

(Num)
→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩

(Vcc)
→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩

(Add1)
→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩

(Num)
→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(App1)
→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩

(Vcc)
→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩

(Add1)
→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩

(Num)
→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(App1)
→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩

(Add1)
→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩

(Num)
→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(App1)
→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩
(Add1)

→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩

(Num)
→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(App1)
→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩
(Add1)

→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩
(Num)

→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(App1)
→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩
(Add1)

→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩
(Num)

→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(App1)

→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩

(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩
(Add1)

→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩
(Num)

→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(App1)

→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩
(Add1)

→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩
(Num)

→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(App1)

→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩
(Add1)

→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩
(Num)

→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(App1)

→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 1
Let’s interpret the expression 2 * (vcc k; (3 + k(5))):

where
{

σ0 = [k 7→ ⟨κ0 || s0⟩]
κ0 = (*) :: □
s0 = 2 :: ■

⟨ (∅ ⊢ 2 * (vcc k; (3 + k(5)))) :: □ || ■ ⟩
(Mul1)

→ ⟨ (∅ ⊢ 2) :: (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || ■ ⟩
(Num)

→ ⟨ (∅ ⊢ (vcc k; (3 + k(5)))) :: (*) :: □ || 2 :: ■ ⟩
(Vcc)

→ ⟨ (σ0 ⊢ (3 + k(5))) :: (*) :: □ || 2 :: ■ ⟩
(Add1)

→ ⟨ (σ0 ⊢ 3) :: (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 2 :: ■ ⟩
(Num)

→ ⟨ (σ0 ⊢ k(5)) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(App1)

→ ⟨ (σ0 ⊢ k) :: (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || 3 :: 2 :: ■ ⟩
(Id)
→ ⟨ (σ0 ⊢ 5) :: (@) :: (+) :: (*) :: □ || ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(Num)
→ ⟨ (@) :: (+) :: (*) :: □ || 5 :: ⟨κ0 || s0⟩ :: 3 :: 2 :: ■ ⟩

(App2,κ)
→ ⟨ (*) :: □ || 5 :: 2 :: ■ ⟩

(Mul2)
→ ⟨ □ || 10 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 26 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩
(App2,λ)

→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩
(Vcc)

→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩
(Mul1)

→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
(App1)

→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩

(App1)
→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩

(Fun)
→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩

(Num)
→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩

(App2,λ)
→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩

(Vcc)
→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩

(Mul1)
→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩

(App1)
→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩

(Fun)
→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩

(Num)
→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩

(App2,λ)
→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩

(Vcc)
→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩

(Mul1)
→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩

(App1)
→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2

σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩

(Num)
→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩

(App2,λ)
→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩

(Vcc)
→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩

(Mul1)
→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩

(App1)
→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2

σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩

(App2,λ)
→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩

(Vcc)
→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩

(Mul1)
→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩

(App1)
→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]

σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩
(App2,λ)

→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩

(Vcc)
→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩

(Mul1)
→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩

(App1)
→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩
(App2,λ)

→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩
(Vcc)

→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩

(Mul1)
→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩

(App1)
→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩
(App2,λ)

→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩
(Vcc)

→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩
(Mul1)

→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩

(App1)
→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩
(App2,λ)

→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩
(Vcc)

→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩
(Mul1)

→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
(App1)

→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·

→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩
(App2,κ)

→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩
(App2,λ)

→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩
(Vcc)

→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩
(Mul1)

→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
(App1)

→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Example 2
Let’s interpret the expression (λx.(vcc r; r(x + 1) * 2))(3):

where
{

e0 = vcc r; r(x + 1) * 2
σ0 = [x 7→ 3]
σ1 = σ0[r 7→ ⟨□ || ■⟩]

⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))(3)) :: □ || ■ ⟩
(App1)

→ ⟨ (∅ ⊢ (λx.(vcc r; r(x + 1) * 2))) :: (∅ ⊢ 3) :: (@) :: □ || ■ ⟩
(Fun)

→ ⟨ (∅ ⊢ 3) :: (@) :: □ || ⟨λx.e0,∅⟩ :: ■ ⟩
(Num)

→ ⟨ (@) :: □ || 3 :: ⟨λx.e0,∅⟩ :: ■ ⟩
(App2,λ)

→ ⟨ (σ0 ⊢ vcc r; r(x + 1) * 2) :: □ || ■ ⟩
(Vcc)

→ ⟨ (σ1 ⊢ r(x + 1) * 2) :: □ || ■ ⟩
(Mul1)

→ ⟨ (σ1 ⊢ r(x + 1)) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
(App1)

→ ⟨ (σ1 ⊢ r) :: (σ1 ⊢ x + 1) :: (@) :: (σ1 ⊢ 2) :: (*) :: □ || ■ ⟩
· · ·
→∗ ⟨ (@) :: (σ1 ⊢ 2) :: (*) :: □ || 4 :: ⟨□ || ■⟩ :: ■ ⟩

(App2,κ)
→ ⟨ □ || 4 :: ■ ⟩

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 27 / 34

Contents

1. First-Class Continuations

2. KFAE – FAE with First-Class Continuations
Concrete/Abstract Syntax

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

4. Control Statements

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 28 / 34

Control Statements
Many real-world programming languages support control statements to
change the control-flow of a program.

For example, C++ supports break, continue, and return statements:

int sumEvenUntilZero(int xs[], int len) {
if (len <= 0) return 0; // directly return 0 if len <= 0
int sum = 0;
for (int i = 0; i < len; i++) {

if (xs[i] == 0) break; // stop the loop if xs[i] == 0
if (xs[i] % 2 == 1) continue; // skip the rest if xs[i] is odd
sum += xs[i];

}
return sum; // finally return the sum

}
int xs[] = {4, 1, 3, 2, 0, 6, 5, 8};
sumEvenUntilZero(xs, 8); // 4 + 2 = 6

Let’s represent them using first-class continuations!

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 29 / 34

Control Statements
Many real-world programming languages support control statements to
change the control-flow of a program.

For example, C++ supports break, continue, and return statements:

int sumEvenUntilZero(int xs[], int len) {
if (len <= 0) return 0; // directly return 0 if len <= 0
int sum = 0;
for (int i = 0; i < len; i++) {

if (xs[i] == 0) break; // stop the loop if xs[i] == 0
if (xs[i] % 2 == 1) continue; // skip the rest if xs[i] is odd
sum += xs[i];

}
return sum; // finally return the sum

}
int xs[] = {4, 1, 3, 2, 0, 6, 5, 8};
sumEvenUntilZero(xs, 8); // 4 + 2 = 6

Let’s represent them using first-class continuations!

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 29 / 34

Control Statements
• return statement:

x => body

means
x => { vcc return;

body // return(e) directly returns e to the caller
}

• break and continue statements:
while (cond) body

means
{ vcc break;

while (cond) { vcc continue;
body // continue(e)/break(e) jumps to the next/end of the loop

}
}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 30 / 34

Control Statements
• return statement:

x => body

means
x => { vcc return;

body // return(e) directly returns e to the caller
}

• break and continue statements:
while (cond) body

means
{ vcc break;

while (cond) { vcc continue;
body // continue(e)/break(e) jumps to the next/end of the loop

}
}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 30 / 34

Control Statements
• return statement:

x => body

means
x => { vcc return;

body // return(e) directly returns e to the caller
}

• break and continue statements:
while (cond) body

means
{ vcc break;

while (cond) { vcc continue;
body // continue(e)/break(e) jumps to the next/end of the loop

}
}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 30 / 34

Control Statements
• return statement:

x => body

means
x => { vcc return;

body // return(e) directly returns e to the caller
}

• break and continue statements:
while (cond) body

means
{ vcc break;

while (cond) { vcc continue;
body // continue(e)/break(e) jumps to the next/end of the loop

}
}

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 30 / 34

Control Statements
We can represent other control statements similarly, but think for yourself!

• exception in Python

try:
x = y / z

except ZeroDivisionError:
x = 0

• generator in JavaScript

const foo = function* () { yield 'a'; yield 'b'; yield 'c'; };
let str = '';
for (const c of foo()) { str = str + c; }
str // 'abc'

• coroutines in Kotlin
• async/await in C#
• . . .

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 31 / 34

Summary

1. First-Class Continuations

2. KFAE – FAE with First-Class Continuations
Concrete/Abstract Syntax

3. Interpreter and Reduction Semantics for KFAE
Recall: Interpreter and Reduction Semantics for FAE
Interpreter and Reduction Semantics for KFAE
First-Class Continuations
Function Application
Example 1
Example 2

4. Control Statements

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 32 / 34

Exercise #10

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/kfae

• Please see above document on GitHub:
• Implement reduce function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 33 / 34

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/kfae

Next Lecture
• Compiling with Continuations

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 16 – First-Class Continuations November 4, 2024 34 / 34

https://plrg.korea.ac.kr

	First-Class Continuations
	KFAE – FAE with First-Class Continuations
	Concrete/Abstract Syntax

	Interpreter and Reduction Semantics for KFAE
	Recall: Interpreter and Reduction Semantics for FAE
	Interpreter and Reduction Semantics for KFAE
	First-Class Continuations
	Function Application
	Example 1
	Example 2

	Control Statements

