Lecture 2 — Syntax and Semantics (1)

COSE212: Programming Languages

Jihyeok Park

VNPLRG

2024 Fall

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Recall ’VNPLRG

e Before entering the world of PL, we learned the basics of Scala
language in the previous lecture.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Recall ’VNPLRG

e Before entering the world of PL, we learned the basics of Scala
language in the previous lecture.

® In this course, you will learn how to:

® design programming languages in a mathematical way.
® implement their interpreters using Scala.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Recall ’VNPLRG

e Before entering the world of PL, we learned the basics of Scala
language in the previous lecture.

® In this course, you will learn how to:

® design programming languages in a mathematical way.
® implement their interpreters using Scala.

® We will grow a programming language from arithmetic expressions
(AE) into a more complex language by adding more features.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Recall ’VNPLRG

e Before entering the world of PL, we learned the basics of Scala
language in the previous lecture.

® In this course, you will learn how to:

® design programming languages in a mathematical way.
® implement their interpreters using Scala.

® We will grow a programming language from arithmetic expressions
(AE) into a more complex language by adding more features.

® |n this lecture, we will learn how to design a programming language
in a mathematical way.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 2/27

Contents

1. Programming Languages

2. Syntax
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax

3. Operational Semantics
Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1)

’VNPLRG

September 9, 2024

3/27

Contents ’VNPLRG

1. Programming Languages

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Programming Languages 7NPLRG

Definition (Programming Language)

A programming language is defined by
® Syntax: a grammar that defines the structure of programs

® Semantics: a set of rules that defines the meaning of programs

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Programming Languages 7NPLRG

Definition (Programming Language)

A programming language is defined by
® Syntax: a grammar that defines the structure of programs

® Semantics: a set of rules that defines the meaning of programs

P Abstract
Program Syn(f:l;T';'ree Interpreter Result

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Programming Languages 7NPLRG

Definition (Programming Language)

A programming language is defined by
® Syntax: a grammar that defines the structure of programs

® Semantics: a set of rules that defines the meaning of programs

Syntax Tree Interpreter Result
Program
? (AST)

Which
strings are
valid?

Concrete
Syntax

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 7/27

Programming Languages 7NPLRG

Definition (Programming Language)

A programming language is defined by
® Syntax: a grammar that defines the structure of programs

® Semantics: a set of rules that defines the meaning of programs

Syntax Tree Interpreter Result
Program
? (AST)

Which Essential

strings are structures of
valid? programs

Concrete Abstract
Syntax Syntax

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Programming Languages 7NPLRG

Definition (Programming Language)

A programming language is defined by
® Syntax: a grammar that defines the structure of programs

® Semantics: a set of rules that defines the meaning of programs

Syntax Tree Interpreter Result
Program
? (AST) '

Which Essential What is the

strings are structures of expected
valid? programs result?

Concrete Abstract Operational
Syntax Syntax Semantics

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Example — Arithmetic Expressions ’MPLRG

For example, let's consider the arithmetic expressions (AE) supporting
addition and multiplication of number (integer) values.

® 4 + 2

® 1 x 24

® 42 + 4 x 10

e (1 +2) % (2+23)

There are infinitely many AEs.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 10 /27

Example — Arithmetic Expressions ’MPLRG

For example, let's consider the arithmetic expressions (AE) supporting
addition and multiplication of number (integer) values.

® 4 + 2

e 1 x 24

® -42 + 4 x 10

e (1 +2) % (2+3)

There are infinitely many AEs.

Which strings are valid AEs? — (concrete syntax)

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 10 /27

Example — Arithmetic Expressions ’MPLRG

For example, let's consider the arithmetic expressions (AE) supporting
addition and multiplication of number (integer) values.

® 4 + 2

® 1 x 24

® -42 + 4 x 10

e (1 +2) % (2+3)

There are infinitely many AEs.
Which strings are valid AEs? — (concrete syntax)

What does parsing result of each AE look like? — (abstract syntax)

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 10 /27

Example — Arithmetic Expressions ’MPLRG

For example, let's consider the arithmetic expressions (AE) supporting
addition and multiplication of number (integer) values.

® 4 + 2

® 1 x 24

® -42 + 4 x 10

e (1 +2) % (2+3)

There are infinitely many AEs.
Which strings are valid AEs? — (concrete syntax)
What does parsing result of each AE look like? — (abstract syntax)

What is the evaluation result of each AE? — (operational semantics)

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 10 /27

Contents ’VNPLRG

2. Syntax
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 11/27

Extended Backus-Naur Form (EBNF) ’MPLRG

We use a variant of the extended Backus-Naur form (EBNF) to define
the concrete/abstract syntax of programming languages.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 12 /27

Extended Backus-Naur Form (EBNF) ’MPLRG

We use a variant of the extended Backus-Naur form (EBNF) to define
the concrete/abstract syntax of programming languages.

We use the different notation for concrete and abstract syntax:

Description Concrete Syntax | Abstract Syntax
Terminal "a a
Nonterminal <expr> e
Optional <expr>? e’
Zero or more repetition <expr>* e*
One or more repetition <expr>+ et

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 12 /27

Extended Backus-Naur Form (EBNF) ’MPLRG

We use a variant of the extended Backus-Naur form (EBNF) to define
the concrete/abstract syntax of programming languages.

We use the different notation for concrete and abstract syntax:

Description Concrete Syntax | Abstract Syntax
Terminal "a" a
Nonterminal <expr> e
Optional <expr>? e’
Zero or more repetition <expr>* e*
One or more repetition <expr>+ et

For example, we can define a concrete syntax of integers as follows:

<digit> co= Q" | nyqn I non I n3n | |l4u I ngn I ngn | ||7|| I ngn I ngn
<number> ::= "-"7 <digit>+

COSE212 @ Korea University

Lecture 2 — Syntax and Semantics (1)

September 9, 2024 12/27

Concrete Syntax ’VPLRG

Let’s define the concrete syntax of AE in BNF:

<expr> ::= <number>

| <expr> "+" <expr>
| <expr> "#" <expr>
|

Il(ll <eXpr> II)II

It is the surface-level representation of programs with all the syntactic
details to decide whether a given string is a valid AE or not.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 13 /27

Concrete Syntax ’VPLRG

Let’s define the concrete syntax of AE in BNF:

<expr> ::

<number>

<expr> "+" <expr>
<expr> "x" <expr>
n (ll <expr> Il) n

It is the surface-level representation of programs with all the syntactic
details to decide whether a given string is a valid AE or not.

For example, (1+2)*3 is a valid AE:

<expr> = <expr>*<expr> = (<expr>) *<expr>

= (<expr>+<expr>)*<expr> = (<number>+<expr>)*<expr>

= (1+<expr>)*<expr> = (1+<number>)*<expr>
= (1+2) *<expr> = (1+2)*<number>
= (1+2)%3

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 13 /27

Concrete Syntax

Let’s define the concrete syntax of AE in BNF:

7VNPLRG

<expr> ::

<number>

<expr> "+" <expr>
<expr> "x" <expr>
n (ll <eXpr> Il) n

We need associativity and precedence rules to remove ambiguity:

e v and "x" are left-associative.

"{ + 2 4+ 3" = Il(1 + 2) + 3"
" ox 2 % 3"

||(1 * 2) * 3N

e x" has higher precedence than "+".

"1+ 2 % 3|| . "1 o+ (2 * 3)u

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1)

September 9, 2024

14 /27

Abstract Syntax ’VPLRG

Let's define the abstract syntax of AE in BNF:

Numbers n € Z (BigInt)
Expressions e ::=n (Num)

| e+e (Add)

| e*xe (Mul)

It captures only the essential structure of AE rather than the details.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 15 /27

Abstract Syntax ’VPLRG

Let's define the abstract syntax of AE in BNF:

Numbers n € Z (BigInt)
Expressions e ::=n (Num)

| e+e (Add)

| e*xe (Mul)

It captures only the essential structure of AE rather than the details.

The abstract syntax trees (ASTs) of "(1+2)*3" and "1+2%3":

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 15 /27

Concrete vs. Abstract Syntax ’VPLRG

While concrete syntax is the surface-level representation of programs,
abstract syntax captures the essential structure of programs.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 16 /27

Concrete vs. Abstract Syntax

7VNPLRG

While concrete syntax is the surface-level representation of programs,
abstract syntax captures the essential structure of programs.

There might be multiple concrete syntax for the same abstract syntax:

<expr> ::

<number>

<expr> "+" <expr>
<expr> "*" <expr>
u(u <expr> n)u

<expr> ::

<number>
u(u ngn <expr> <expr> u)n
" (u Mg <expr> <expr> n) "

<expr> ::

<number>
"ADD[" <expr> ";" <expr> "]"
"MUL[" <expr> u;n <expr> n]u

COSE212 @ Korea University

Lecture 2 — Syntax and Semantics (1)

n € Z (BigInt)
en=n (Num)

| e+e (Add)

| e*xe (Mul)

September 9, 2024 16 /27

Concrete vs. Abstract Syntax ’VPLRG

While concrete syntax is the surface-level representation of programs,
abstract syntax captures the essential structure of programs.

There might be multiple concrete syntax for the same abstract syntax:

(1 +2) 3

(x (+ 12) 3) = H I

(i) ())
MUL[ADD[1; 2]; 3] Q e

COSE212 @ Korea University

Lecture 2 — Syntax and Semantics (1)

September 9, 2024 17 /27

Contents ’VNPLRG

3. Operational Semantics
Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 18 /27

Semantics ’NPLRG

There exist diverse ways to define semantics of programming languages.

e Axiomatic semantics defines the meaning of a program by
specifying the properties that hold after its execution.

{r=nAy=m} z=zxz+y {z=n+m}

¢ Denotational semantics defines the meaning of a program by
mapping it to a mathematical object that represents its meaning.

[e + €] = [e] + [e]

e Operational semantics defines the meaning of a program by
specifying how it executes on a machine.

|—€1:>’rl1 |_€2:>n2

Fel+ey=mni+no

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 19 /27

Operational Semantics ’NPLRG

In this course, we will focus on operational semantics, and there are two
different representative styles:

¢ Big-Step Operational (Natural) Semantics defines the meaning of
a program by specifying how it executes on a machine in one big step.

Fe=n

(The execution result of an expression e is n because of)

¢ Small-Step Operational (Reduction) Semantics defines the
meaning of a program by specifying how it executes on a machine
step-by-step.
e—e e —...=n

(An expression e is reduced to ¢/, then to €”, and so on until n.)

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 20/27

Inference Rules ’VNPLRG

Operational semantics is defined by inference rules.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 21/27

Inference Rules ’VNPLRG

Operational semantics is defined by inference rules.
An inference rule consists of multiple premises and one conclusion:

premise; premisey o premise,,

conclusion

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 21/27

Inference Rules ’VNPLRG

Operational semantics is defined by inference rules.
An inference rule consists of multiple premises and one conclusion:

premise; premisey o premise,,

conclusion
meaning that “if all the premises are true, then the conclusion is true”:

premise; N\ premisey A ...\ premise, == conclusion

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

21/27

Inference Rules ’VNPLRG

Operational semantics is defined by inference rules.
An inference rule consists of multiple premises and one conclusion:

premise; premisey o premise,,

conclusion
meaning that “if all the premises are true, then the conclusion is true”:

premise; N\ premisey A ...\ premise, == conclusion

For example,
A — B B = C

A= C
means that “if A implies B, and B implies C, then A implies C'".

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 21/27

Big-Step Operational (Natural) Semantics ’VPLRG

It means that “the expression e evaluates to the number n”.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 22/27

Big-Step Operational (Natural) Semantics ’VPLRG

It means that “the expression e evaluates to the number n”.

Let’s define the big-step operational (natural) semantics of AE:

NuM —
Fn=mn
e = (Num) ADD Fel=ng |—€2:>n2
| e+e (Add) — Fel +e=ni+no
| exe (Mul)
|—61:>’rl1 |—€2:>77,2
MuL

Fei* e =ng Xng

September 9, 2024 22/27

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1)

Big-Step Operational (Natural) Semantics ’VPLRG

Fel=mn Fex = no Fel=mn Fex = no
NuMm —— ApbD MuL
Fn=mn Feil+ex=ny+ne Fep *ex=ny Xng

Let's prove + (1 + 2) *x 3 = 9 by drawing a derivation tree:

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 23 /27

Big-Step Operational (Natural) Semantics ’VPLRG

Fel=mn F e = no Fel=mn Fex = no
NuMm —— ApbD MuL
Fn=mn Feil+ex=ny+ne Fep *ex=ny Xng

Let's prove + (1 + 2) *x 3 = 9 by drawing a derivation tree:

Num Num
Fl1=1 F2=2
ApD Num
F1+2=23 F3=3
MuL

F(1+2)*x3=9

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 23 /27

Big-Step Operational (Natural) Semantics ’VPLRG

Fel=mn Fex = no

Fel=mn F e = no

NumMm —— ADD
Fn=n Fei+ex=ni+no

Let's prove + (1 + 2) *x 3 = 9 by drawing a derivation tree:

Fei *x e = ni X no

Num Num
Fl1=1 F2=2
ApD Num
F1+2=23 F3=3
MuL
F(1+2)*x3=9

Let's prove 1+ (2 * 3) = 7 by drawing a derivation tree:

F1+((2%*3)=

September 9, 2024

Lecture 2 — Syntax and Semantics (1)

COSE212 @ Korea University

Small-Step Operational (Reduction) Semantics ~ AVPLRG

ep — €1

It means that “eq is reduced to e; as the result of one-step evaluation”.

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 24 /27

Small-Step Operational (Reduction) Semantics ~ AVPLRG

ep — €1

It means that “eq is reduced to e; as the result of one-step evaluation”.
Let's define the small-step operational (reduction) semantics of AE:

61—)6’1 61—)6’1

61+62—>6/1+€2 61*62—)6’1*62

n (Num) ey — b ey — b

n1+62—>n1+el2 n1*62—>n1*e'2

ny+ne —ny+ng Nip*ne —ny Xng

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 24 /27

Small-Step Operational (Reduction) Semantics ~ AVPLRG

’ ’
e; — e €2 — €2
7 7
el +ey—> e +e2 ny +ezx —ny + ey ni1 + ng — N1+ n2
’ /
er — ey €2 — €9
7 7
€1 ¥ eg — e *x e2 Ny * eg — N1 * €y ny * ng — N1 X Ng

Let's prove (1 + 2) * 3 —* 9 by showing a reduction sequence:

(Note that —* denotes the reflexive-transitive closure of —.)

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 25 /27

Small-Step Operational (Reduction) Semantics ~ AVPLRG

’ ’
e; — e €2 — €2
7 7
el +ey—> e +e2 ny +ezx —ny + ey ni1 + ng — N1+ n2
’ /
er — ey €2 — €9
7 7
€1 ¥ eg — e *x e2 Ny * eg — N1 * €y ny * ng — N1 X Ng

Let's prove (1 + 2) * 3 —* 9 by showing a reduction sequence:

(Note that —* denotes the reflexive-transitive closure of —.)

(1+2)%3 — 3*3 — 9

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 25 /27

Small-Step Operational (Reduction) Semantics ~ AVPLRG

’ ’
e; — e €2 — €2
7 7
el +ey—> e +e2 ny +ezx —ny + ey ni1 + ng — N1+ n2
’ /
el — ey €2 — €9
7 7
€1 ¥ eg — e *x e2 Ny * eg — N1 * €y ny * ng — N1 X Ng

Let's prove (1 + 2) * 3 —* 9 by showing a reduction sequence:

(Note that —* denotes the reflexive-transitive closure of —.)
(1+2)%3 — 3*3 — 9
Let's prove 1 + 2 * 3 —* 7 by showing a reduction sequence:

1+2%*3 —

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024

Summary ’VPLRG

1. Programming Languages

2. Syntax
Concrete Syntax
Abstract Syntax
Concrete vs. Abstract Syntax

3. Operational Semantics
Inference Rules
Big-Step Operational (Natural) Semantics
Small-Step Operational (Reduction) Semantics

(See the language specification of AE.1)

1https ://github.com/ku-plrg-classroom/docs/blob/main/cose212/ae/ae-spec.pdf
COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 26 /27

https://github.com/ku-plrg-classroom/docs/blob/main/cose212/ae/ae-spec.pdf

Next Lecture ’VNPLRG

® Syntax and Semantics (2)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 2 — Syntax and Semantics (1) September 9, 2024 27 /27

https://plrg.korea.ac.kr

	Programming Languages
	Syntax
	Concrete Syntax
	Abstract Syntax
	Concrete vs. Abstract Syntax

	Operational Semantics
	Inference Rules
	Big-Step Operational (Natural) Semantics
	Small-Step Operational (Reduction) Semantics

