
Lecture 20 – Typing Recursive Functions
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 1 / 41



Recall
• TFAE – FAE with type system.

• Type Checker and Typing Rules
• Interpreter and Natural Semantics

• Let’s learn how to apply type system to recursive functions.

• RFAE is an extension of FAE with
1 recursive functions
2 conditional expressions

• TRFAE – RFAE with type system.
• Type Checker and Typing Rules
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 2 / 41



Recall
• TFAE – FAE with type system.

• Type Checker and Typing Rules
• Interpreter and Natural Semantics

• Let’s learn how to apply type system to recursive functions.

• RFAE is an extension of FAE with
1 recursive functions
2 conditional expressions

• TRFAE – RFAE with type system.
• Type Checker and Typing Rules
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 2 / 41



Recall
• TFAE – FAE with type system.

• Type Checker and Typing Rules
• Interpreter and Natural Semantics

• Let’s learn how to apply type system to recursive functions.

• RFAE is an extension of FAE with
1 recursive functions
2 conditional expressions

• TRFAE – RFAE with type system.
• Type Checker and Typing Rules
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 2 / 41



Recall
• TFAE – FAE with type system.

• Type Checker and Typing Rules
• Interpreter and Natural Semantics

• Let’s learn how to apply type system to recursive functions.

• RFAE is an extension of FAE with
1 recursive functions
2 conditional expressions

• TRFAE – RFAE with type system.
• Type Checker and Typing Rules
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 2 / 41



Contents

1. Types for Recursive Functions
Recall: mkRec and Recursive Functions
mkRec in TFAE

2. TRFAE – RFAE with Type System
Concrete Syntax
Abstract Syntax

3. Type Checker and Typing Rules
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 3 / 41



Contents

1. Types for Recursive Functions
Recall: mkRec and Recursive Functions
mkRec in TFAE

2. TRFAE – RFAE with Type System
Concrete Syntax
Abstract Syntax

3. Type Checker and Typing Rules
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 4 / 41



Recall: mkRec and Recursive Functions
A recursive function is a function that calls itself, and it is useful for
iterative processes on inductive data structures.

Let’s define a recursive function sum that computes the sum of integers
from 1 to n in Scala:

def sum(n: Int): Int =
if (n < 1) 0 // base case
else n + sum(n - 1) // recursive case

sum(10) // 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 55

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 5 / 41



Recall: mkRec and Recursive Functions
A recursive function is a function that calls itself, and it is useful for
iterative processes on inductive data structures.

Let’s define a recursive function sum that computes the sum of integers
from 1 to n in Scala:

def sum(n: Int): Int =
if (n < 1) 0 // base case
else n + sum(n - 1) // recursive case

sum(10) // 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 55

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 5 / 41



Recall: mkRec and Recursive Functions

We learned two ways to support recursion functions:

1 by introducing a helper function called mkRec in FAE as follows:

/* FAE */
val mkRec = body => {

val fX = fY => {
val f = x => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec(sum => n => if (n < 1) 0 else n + sum(n + -1)); sum(10)

or 2 by adding new syntax for recursive functions in RFAE:

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1); sum(10)

Can we define mkRec in TFAE? No! Let’s see why.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 6 / 41



Recall: mkRec and Recursive Functions
We learned two ways to support recursion functions:

1 by introducing a helper function called mkRec in FAE as follows:

/* FAE */
val mkRec = body => {

val fX = fY => {
val f = x => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec(sum => n => if (n < 1) 0 else n + sum(n + -1)); sum(10)

or 2 by adding new syntax for recursive functions in RFAE:

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1); sum(10)

Can we define mkRec in TFAE? No! Let’s see why.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 6 / 41



Recall: mkRec and Recursive Functions
We learned two ways to support recursion functions:

1 by introducing a helper function called mkRec in FAE as follows:

/* FAE */
val mkRec = body => {

val fX = fY => {
val f = x => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec(sum => n => if (n < 1) 0 else n + sum(n + -1)); sum(10)

or 2 by adding new syntax for recursive functions in RFAE:

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1); sum(10)

Can we define mkRec in TFAE? No! Let’s see why.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 6 / 41



Recall: mkRec and Recursive Functions
We learned two ways to support recursion functions:

1 by introducing a helper function called mkRec in FAE as follows:

/* FAE */
val mkRec = body => {

val fX = fY => {
val f = x => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec(sum => n => if (n < 1) 0 else n + sum(n + -1)); sum(10)

or 2 by adding new syntax for recursive functions in RFAE:

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1); sum(10)

Can we define mkRec in TFAE? No! Let’s see why.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 6 / 41



Recall: mkRec and Recursive Functions
We learned two ways to support recursion functions:

1 by introducing a helper function called mkRec in FAE as follows:

/* FAE */
val mkRec = body => {

val fX = fY => {
val f = x => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec(sum => n => if (n < 1) 0 else n + sum(n + -1)); sum(10)

or 2 by adding new syntax for recursive functions in RFAE:

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1); sum(10)

Can we define mkRec in TFAE?

No! Let’s see why.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 6 / 41



Recall: mkRec and Recursive Functions
We learned two ways to support recursion functions:

1 by introducing a helper function called mkRec in FAE as follows:

/* FAE */
val mkRec = body => {

val fX = fY => {
val f = x => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec(sum => n => if (n < 1) 0 else n + sum(n + -1)); sum(10)

or 2 by adding new syntax for recursive functions in RFAE:

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1); sum(10)

Can we define mkRec in TFAE? No! Let’s see why.
COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 6 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: ???) => {

val fX = (fY: ???) => {
val f = (x: ???) => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec((sum: ???) => (n: ???) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 7 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: ???) => {

val fX = (fY: ???) => {
val f = (x: ???) => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec((sum: ???) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 8 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: ???) => {

val fX = (fY: ???) => {
val f = (x: ???) => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 9 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: ???) => {
val f = (x: ???) => fY(fY)(x);
body(f)

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 10 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: ???) => {
val f = (x: ???) => fY(fY)(x);
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 11 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: ???) => {
val f = (x: Number) => fY(fY)(x);
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 12 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: ???) => {
val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 13 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: T) => {
val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.
Let T be the type of fY.

Then, T should be equal to T => Number => Number.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 14 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: T) => {
val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.
Let T be the type of fY.
Then, T should be equal to T => Number => Number.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 14 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: T => Number => Number) => {
val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.
Let T be the type of fY.
Then, T should be equal to T => Number => Number.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 15 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: (T => Number => Number) => Number => Number) => {
val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.
Let T be the type of fY.
Then, T should be equal to T => Number => Number.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 16 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: ((T => Number => Number) => Number => Number) => Number
=> Number) => {
val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.
Let T be the type of fY.
Then, T should be equal to T => Number => Number.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 17 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: (((T => Number => Number) => Number => Number) => Number
=> Number) => Number => Number) => {

val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.
Let T be the type of fY.
Then, T should be equal to T => Number => Number.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 18 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: ((((T => Number => Number) => Number => Number) =>
Number => Number) => Number => Number) => Number => Number) => {
val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.
Let T be the type of fY.
Then, T should be equal to T => Number => Number.

We cannot define such recursive type in TFAE.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 19 / 41



mkRec in TFAE

/* TFAE */
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: ((((T => Number => Number) => Number => Number) =>
Number => Number) => Number => Number) => Number => Number) => {
val f = (x: Number) => fY(fY)(x); // fY(fY): Number => Number
body(f) // f: Number => Number

};
fX(fX)

};
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

Let’s fill out the parts of ??? for type annotations one by one.
Let T be the type of fY.
Then, T should be equal to T => Number => Number.
We cannot define such recursive type in TFAE.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 19 / 41



mkRec in Scala
Then, is it possible to define mkRec in Scala?

Yes! Since Scala supports recursive types, we can define mkRec as:1

type Number = BigInt
case class T(self: T => Number => Number) // T = T => Number => Number
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: T) => {
val f = (x: Number) => fY.self(fY)(x);
body(f)

};
fX(T(fX))

}
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

1This code is given by students 최민석 and 최용욱 in 2023 and slightly modified.
COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 20 / 41



mkRec in Scala
Then, is it possible to define mkRec in Scala?
Yes! Since Scala supports recursive types, we can define mkRec as:1

type Number = BigInt
case class T(self: T => Number => Number) // T = T => Number => Number
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: T) => {
val f = (x: Number) => fY.self(fY)(x);
body(f)

};
fX(T(fX))

}
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

1This code is given by students 최민석 and 최용욱 in 2023 and slightly modified.
COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 20 / 41



mkRec in Scala
Then, is it possible to define mkRec in Scala?
Yes! Since Scala supports recursive types, we can define mkRec as:1

given Conversion[T, T => Number => Number] = _.self
given Conversion[T => Number => Number, T] = T(_)
type Number = BigInt
case class T(self: T => Number => Number) // T = T => Number => Number
val mkRec = (body: (Number => Number) => Number => Number) => {

val fX = (fY: T) => {
val f = (x: Number) => fY(fY)(x);
body(f)

};
fX(fX)

}
val sum = mkRec((sum: Number => Number) => (n: Number) =>

if (n < 1) 0
else n + sum(n + -1));

sum(10)

1This code is given by students 최민석 and 최용욱 in 2023 and slightly modified.
COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 21 / 41



Contents

1. Types for Recursive Functions
Recall: mkRec and Recursive Functions
mkRec in TFAE

2. TRFAE – RFAE with Type System
Concrete Syntax
Abstract Syntax

3. Type Checker and Typing Rules
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 22 / 41



TRFAE – RFAE with Type System
Before defining TRFAE, guess the type of the following RFAE expressions:

/* RFAE */ def f(n) = n; f

Without type annotation for parameter n, we cannot guess its type.

/* RFAE */ def f(n: Number) = n; f

With type annotation for parameter n, we can guess its type.

How about this?

/* RFAE */ def f(n: Number) = f(n); f

Unfortunately, its return type is not clear and actually can be any type.

So, we need type annotation for both parameters and return types.

/* RFAE */ def f(n: Number): Number = f(n); f

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 23 / 41



TRFAE – RFAE with Type System
Before defining TRFAE, guess the type of the following RFAE expressions:

/* RFAE */ def f(n) = n; f

Without type annotation for parameter n, we cannot guess its type.

/* RFAE */ def f(n: Number) = n; f

With type annotation for parameter n, we can guess its type.

How about this?

/* RFAE */ def f(n: Number) = f(n); f

Unfortunately, its return type is not clear and actually can be any type.

So, we need type annotation for both parameters and return types.

/* RFAE */ def f(n: Number): Number = f(n); f

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 23 / 41



TRFAE – RFAE with Type System
Before defining TRFAE, guess the type of the following RFAE expressions:

/* RFAE */ def f(n) = n; f

Without type annotation for parameter n, we cannot guess its type.

/* RFAE */ def f(n: Number) = n; f

With type annotation for parameter n, we can guess its type.

How about this?

/* RFAE */ def f(n: Number) = f(n); f

Unfortunately, its return type is not clear and actually can be any type.

So, we need type annotation for both parameters and return types.

/* RFAE */ def f(n: Number): Number = f(n); f

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 23 / 41



TRFAE – RFAE with Type System
Before defining TRFAE, guess the type of the following RFAE expressions:

/* RFAE */ def f(n) = n; f

Without type annotation for parameter n, we cannot guess its type.

/* RFAE */ def f(n: Number) = n; f

With type annotation for parameter n, we can guess its type.

How about this?

/* RFAE */ def f(n: Number) = f(n); f

Unfortunately, its return type is not clear and actually can be any type.

So, we need type annotation for both parameters and return types.

/* RFAE */ def f(n: Number): Number = f(n); f

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 23 / 41



TRFAE – RFAE with Type System
Before defining TRFAE, guess the type of the following RFAE expressions:

/* RFAE */ def f(n) = n; f

Without type annotation for parameter n, we cannot guess its type.

/* RFAE */ def f(n: Number) = n; f

With type annotation for parameter n, we can guess its type.

How about this?

/* RFAE */ def f(n: Number) = f(n); f

Unfortunately, its return type is not clear and actually can be any type.

So, we need type annotation for both parameters and return types.

/* RFAE */ def f(n: Number): Number = f(n); f

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 23 / 41



TRFAE – RFAE with Type System
Before defining TRFAE, guess the type of the following RFAE expressions:

/* RFAE */ def f(n) = n; f

Without type annotation for parameter n, we cannot guess its type.

/* RFAE */ def f(n: Number) = n; f

With type annotation for parameter n, we can guess its type.

How about this?

/* RFAE */ def f(n: Number) = f(n); f

Unfortunately, its return type is not clear and actually can be any type.

So, we need type annotation for both parameters and return types.

/* RFAE */ def f(n: Number): Number = f(n); f

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 23 / 41



TRFAE – RFAE with Type System
Now, let’s extend RFAE into TRFAE with type system.

/* TRFAE */
def sum(n: Number): Number = {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10) // 55

/* TRFAE */
def fib(n: Number): Number = {

if (n < 2) n
else fib(n + -1) + fib(n + -2)

};
fib(7) // 13

For TRFAE, we need to consider the type system of the following cases:

1 arithmetic comparison operators

2 conditionals

3 recursive function definitions

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 24 / 41



TRFAE – RFAE with Type System
Now, let’s extend RFAE into TRFAE with type system.

/* TRFAE */
def sum(n: Number): Number = {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10) // 55

/* TRFAE */
def fib(n: Number): Number = {

if (n < 2) n
else fib(n + -1) + fib(n + -2)

};
fib(7) // 13

For TRFAE, we need to consider the type system of the following cases:

1 arithmetic comparison operators

2 conditionals

3 recursive function definitions

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 24 / 41



Concrete Syntax
We need to add following concrete syntax from RFAE for TRFAE:

1 type annotations for recursive function definitions
2 types (number, boolean, and arrow types)

// expressions
<expr> ::= ...

| <expr> "<" <expr>
| "if" "(" <expr> ")" <expr> "else" <expr>
| "def" <id> "(" <id> ":" <type> ")" ":" <type>

"=" <expr> ";" <expr>

// types
<type> ::= "(" <type> ")" // only for precedence

| "Number" // number type
| "Boolean" // boolean type
| <type> "=>" <type> // arrow type

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 25 / 41



Abstract Syntax
Similarly, we can define the abstract syntax of TRFAE as follows:

Expressions
E ∋ e ::= . . .

| e < e (Lt)
| if (e) e else e (If)
| def x(x:τ):τ = e; e (Rec)

Types
T ∋ τ ::= num (NumT)

| bool (BoolT)
| τ → τ (ArrowT)

We can define the abstract syntax of TRFAE in Scala as follows:

enum Expr:
...
case Lt(left: Expr, right: Expr)
case If(cond: Expr, thenExpr: Expr, elseExpr: Expr)
case Rec(x: String, p: String, pty: Type, rty: Type, b: Expr, s: Expr)

enum Type:
case NumT
case BoolT
case ArrowT(paramTy: Type, retTy: Type)

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 26 / 41



Abstract Syntax
Similarly, we can define the abstract syntax of TRFAE as follows:

Expressions
E ∋ e ::= . . .

| e < e (Lt)
| if (e) e else e (If)
| def x(x:τ):τ = e; e (Rec)

Types
T ∋ τ ::= num (NumT)

| bool (BoolT)
| τ → τ (ArrowT)

We can define the abstract syntax of TRFAE in Scala as follows:

enum Expr:
...
case Lt(left: Expr, right: Expr)
case If(cond: Expr, thenExpr: Expr, elseExpr: Expr)
case Rec(x: String, p: String, pty: Type, rty: Type, b: Expr, s: Expr)

enum Type:
case NumT
case BoolT
case ArrowT(paramTy: Type, retTy: Type)

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 26 / 41



Contents

1. Types for Recursive Functions
Recall: mkRec and Recursive Functions
mkRec in TFAE

2. TRFAE – RFAE with Type System
Concrete Syntax
Abstract Syntax

3. Type Checker and Typing Rules
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 27 / 41



Type Checker and Typing Rules
Let’s 1 design typing rules of TRFAE to define when an expression is
well-typed in the form of:

Γ ⊢ e : τ

and 2 implement a type checker in Scala according to typing rules:

def typeCheck(expr: Expr, tenv: TypeEnv): Type = ???

The type checker returns the type of e if it is well-typed, or rejects it and
throws a type error otherwise.

Similar to TFAE, we will keep track of the variable types using a type
environment Γ as a mapping from variable names to their types.

Type Environments Γ ∈ X fin−→ T (TypeEnv)

type TypeEnv = Map[String, Type]

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 28 / 41



Type Checker and Typing Rules
Let’s 1 design typing rules of TRFAE to define when an expression is
well-typed in the form of:

Γ ⊢ e : τ

and 2 implement a type checker in Scala according to typing rules:

def typeCheck(expr: Expr, tenv: TypeEnv): Type = ???

The type checker returns the type of e if it is well-typed, or rejects it and
throws a type error otherwise.

Similar to TFAE, we will keep track of the variable types using a type
environment Γ as a mapping from variable names to their types.

Type Environments Γ ∈ X fin−→ T (TypeEnv)

type TypeEnv = Map[String, Type]

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 28 / 41



Arithmetic Comparison Operators

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case Lt(left, right) =>

mustSame(typeCheck(left, tenv), NumT)
mustSame(typeCheck(right, tenv), NumT)
BoolT

Γ ⊢ e : τ

τ−Lt
Γ ⊢ e1 : num Γ ⊢ e2 : num

Γ ⊢ e1 < e2 : bool

Type checker should do
1 check the types of e1 and e2 are num in Γ
2 return bool as the type of e1 < e2

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 29 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE expressions:

if (true) 1 else 2 should be Number
if (true) 1 else true might be Number?
(x: Boolean) => if (x) 1 else x cannot have a type

Type checker cannot know the actual value of condition expression.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 30 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE expressions:

if (true) 1 else 2

should be Number
if (true) 1 else true might be Number?
(x: Boolean) => if (x) 1 else x cannot have a type

Type checker cannot know the actual value of condition expression.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 30 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE expressions:

if (true) 1 else 2 should be Number

if (true) 1 else true might be Number?
(x: Boolean) => if (x) 1 else x cannot have a type

Type checker cannot know the actual value of condition expression.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 30 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE expressions:

if (true) 1 else 2 should be Number
if (true) 1 else true

might be Number?
(x: Boolean) => if (x) 1 else x cannot have a type

Type checker cannot know the actual value of condition expression.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 30 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE expressions:

if (true) 1 else 2 should be Number
if (true) 1 else true might be Number?

(x: Boolean) => if (x) 1 else x cannot have a type

Type checker cannot know the actual value of condition expression.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 30 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE expressions:

if (true) 1 else 2 should be Number
if (true) 1 else true might be Number?
(x: Boolean) => if (x) 1 else x

cannot have a type

Type checker cannot know the actual value of condition expression.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 30 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE expressions:

if (true) 1 else 2 should be Number
if (true) 1 else true might be Number?
(x: Boolean) => if (x) 1 else x cannot have a type

Type checker cannot know the actual value of condition expression.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 30 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE expressions:

if (true) 1 else 2 should be Number
if (true) 1 else true might be Number?
(x: Boolean) => if (x) 1 else x cannot have a type

Type checker cannot know the actual value of condition expression.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 30 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) => ???

Γ ⊢ e : τ

τ−If
???

Γ ⊢ if (e0) e1 else e2 : ???

Let’s think about the types of the following TRFAE:

if (true) 1 else 2 should be Number
if (true) 1 else true REJECT
(x: Boolean) => if (x) 1 else x REJECT

Type checker cannot know the actual value of condition expression.

Let’s accept only if both types of then- and else-expressions are same.
COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 31 / 41



Conditionals

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case If(cond, thenExpr, elseExpr) =>

mustSame(typeCheck(cond, tenv), BoolT)
val thenTy = typeCheck(thenExpr, tenv)
val elseTy = typeCheck(elseExpr, tenv)
mustSame(thenTy, elseTy)
thenTy

Γ ⊢ e : τ

τ−If
Γ ⊢ e0 : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if (e0) e1 else e2 : τ

Type checker should do
1 check the type of e0 is bool in Γ
2 check the types of e1 and e2 are equal in Γ
3 return the type of e1 (or e2)
COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 32 / 41



Recursive Function Definitions

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case Rec(f, p, pty, rty, body, scope) =>

???

Γ ⊢ e : τ

τ−Rec
???

Γ ⊢ def x0(x1:τ1):τ2 = e2; e3 : ???

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 33 / 41



Recursive Function Definitions

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case Rec(f, p, pty, rty, body, scope) =>

mustSame(typeCheck(body, ???), rty)
???

Γ ⊢ e : τ

τ−Rec
??? ⊢ e2 : τ2 ???

Γ ⊢ def x0(x1:τ1):τ2 = e2; e3 : ???

Type checker should do
1 check the type of e2 is τ2 in ???

2 ???

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 34 / 41



Recursive Function Definitions

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case Rec(f, p, pty, rty, body, scope) =>

mustSame(typeCheck(body, tenv + (p -> pty)), rty)
???

Γ ⊢ e : τ

τ−Rec
Γ[x1 : τ1] ⊢ e2 : τ2 ???

Γ ⊢ def x0(x1:τ1):τ2 = e2; e3 : ???

Type checker should do
1 check the type of e2 is τ2 in the type environment extended with type

information for parameter (x1 : τ1)
2 ???

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 35 / 41



Recursive Function Definitions

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case Rec(f, p, pty, rty, body, scope) =>

val fty = ArrowT(pty, rty)
mustSame(typeCheck(body, tenv + (f -> fty) + (p -> pty)), rty)
???

Γ ⊢ e : τ

τ−Rec
Γ[x0 : τ1 → τ2, x1 : τ1] ⊢ e2 : τ2 ???

Γ ⊢ def x0(x1:τ1):τ2 = e2; e3 : ???

Type checker should do
1 check the type of e2 is τ2 in the type environment extended with type

information for function (x0 : τ1 → τ2) and parameter (x1 : τ1)
2 ???

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 36 / 41



Recursive Function Definitions

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case Rec(f, p, pty, rty, body, scope) =>

val fty = ArrowT(pty, rty)
mustSame(typeCheck(body, tenv + (f -> fty) + (p -> pty)), rty)
typeCheck(scope, ???)

Γ ⊢ e : τ

τ−Rec
Γ[x0 : τ1 → τ2, x1 : τ1] ⊢ e2 : τ2 ??? ⊢ e3 : τ3

Γ ⊢ def x0(x1:τ1):τ2 = e2; e3 : τ3

Type checker should do
1 check the type of e2 is τ2 in the type environment extended with type

information for function (x0 : τ1 → τ2) and parameter (x1 : τ1)
2 return the type of e3 in ???

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 37 / 41



Recursive Function Definitions

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case Rec(f, p, pty, rty, body, scope) =>

val fty = ArrowT(pty, rty)
mustSame(typeCheck(body, tenv + (f -> fty) + (p -> pty)), rty)
typeCheck(scope, tenv + (f -> fty))

Γ ⊢ e : τ

τ−Rec
Γ[x0 : τ1 → τ2, x1 : τ1] ⊢ e2 : τ2 Γ[x0 : τ1 → τ2] ⊢ e3 : τ3

Γ ⊢ def x0(x1:τ1):τ2 = e2; e3 : τ3

Type checker should do
1 check the type of e2 is τ2 in the type environment extended with type

information for function (x0 : τ1 → τ2) and parameter (x1 : τ1)
2 return the type of e3 in the type environment extended with type

information for function (x0 : τ1 → τ2)
COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 38 / 41



Summary

1. Types for Recursive Functions
Recall: mkRec and Recursive Functions
mkRec in TFAE

2. TRFAE – RFAE with Type System
Concrete Syntax
Abstract Syntax

3. Type Checker and Typing Rules
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 39 / 41



Exercise #12

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/trfae

• Please see above document on GitHub:
• Implement typeCheck function.
• Implement interp function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 40 / 41

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/trfae


Next Lecture
• Algebraic Data Types (1)

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 20 – Typing Recursive Functions November 18, 2024 41 / 41

https://plrg.korea.ac.kr

	Types for Recursive Functions
	Recall: mkRec and Recursive Functions
	mkRec in TFAE

	TRFAE – RFAE with Type System
	Concrete Syntax
	Abstract Syntax

	Type Checker and Typing Rules
	Arithmetic Comparison Operators
	Conditionals
	Recursive Function Definitions


