
Lecture 23 – Parametric Polymorphism
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 1 / 39

Recall
• An algebraic data type is a recursive sum type of product types.

• ATFAE – TRFAE with ADTs and pattern matching.
• Interpreter and Natural Semantics
• Type Checker and Typing Rules

• In this lecture, we will learn parametric polymorphism.

• PTFAE – TFAE with parametric polymorphism.
• Interpreter and Natural Semantics
• Type Checker and Typing Rules

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 2 / 39

Recall
• An algebraic data type is a recursive sum type of product types.

• ATFAE – TRFAE with ADTs and pattern matching.
• Interpreter and Natural Semantics
• Type Checker and Typing Rules

• In this lecture, we will learn parametric polymorphism.

• PTFAE – TFAE with parametric polymorphism.
• Interpreter and Natural Semantics
• Type Checker and Typing Rules

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 2 / 39

Recall
• An algebraic data type is a recursive sum type of product types.

• ATFAE – TRFAE with ADTs and pattern matching.
• Interpreter and Natural Semantics
• Type Checker and Typing Rules

• In this lecture, we will learn parametric polymorphism.

• PTFAE – TFAE with parametric polymorphism.
• Interpreter and Natural Semantics
• Type Checker and Typing Rules

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 2 / 39

Contents
1. Parametric Polymorphism

2. PTFAE – TFAE with Parametric Polymorphism
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for PTFAE

4. Type Checker and Typing Rules
Type Environment for Type Variables
Well-Formedness of Types
Function Definition
Type Abstraction
Type Application
Function Application

5. Type Soundness of PTFAE
Type Abstraction - Revised

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 3 / 39

Contents
1. Parametric Polymorphism

2. PTFAE – TFAE with Parametric Polymorphism
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for PTFAE

4. Type Checker and Typing Rules
Type Environment for Type Variables
Well-Formedness of Types
Function Definition
Type Abstraction
Type Application
Function Application

5. Type Soundness of PTFAE
Type Abstraction - Revised

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 4 / 39

Polymorphism
In the following Scala program, f is an identity function and we want to
pass 1 1, 2 true, and 3 (y: Int) => y to f, respectively.

def f(x: ???): ??? = x;
f(1); f(true); f((y: Int) => y + 1)

Unfortunately, we cannot assign any type to x because the type of x
should be 1 Int, 2 Boolean, and 3 Int => Int, simultaneously.

How can we resolve this problem? Polymorphism!

Polymorphism is to use a single entity as multiple types.
There are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

Among them, let’s learn parametric polymorphism in this lecture.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 5 / 39

Polymorphism
In the following Scala program, f is an identity function and we want to
pass 1 1, 2 true, and 3 (y: Int) => y to f, respectively.

def f(x: ???): ??? = x;
f(1); f(true); f((y: Int) => y + 1)

Unfortunately, we cannot assign any type to x because the type of x
should be 1 Int, 2 Boolean, and 3 Int => Int, simultaneously.

How can we resolve this problem? Polymorphism!

Polymorphism is to use a single entity as multiple types.
There are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

Among them, let’s learn parametric polymorphism in this lecture.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 5 / 39

Polymorphism
In the following Scala program, f is an identity function and we want to
pass 1 1, 2 true, and 3 (y: Int) => y to f, respectively.

def f(x: ???): ??? = x;
f(1); f(true); f((y: Int) => y + 1)

Unfortunately, we cannot assign any type to x because the type of x
should be 1 Int, 2 Boolean, and 3 Int => Int, simultaneously.

How can we resolve this problem?

Polymorphism!

Polymorphism is to use a single entity as multiple types.
There are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

Among them, let’s learn parametric polymorphism in this lecture.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 5 / 39

Polymorphism
In the following Scala program, f is an identity function and we want to
pass 1 1, 2 true, and 3 (y: Int) => y to f, respectively.

def f(x: ???): ??? = x;
f(1); f(true); f((y: Int) => y + 1)

Unfortunately, we cannot assign any type to x because the type of x
should be 1 Int, 2 Boolean, and 3 Int => Int, simultaneously.

How can we resolve this problem? Polymorphism!

Polymorphism is to use a single entity as multiple types.
There are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

Among them, let’s learn parametric polymorphism in this lecture.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 5 / 39

Polymorphism
In the following Scala program, f is an identity function and we want to
pass 1 1, 2 true, and 3 (y: Int) => y to f, respectively.

def f(x: ???): ??? = x;
f(1); f(true); f((y: Int) => y + 1)

Unfortunately, we cannot assign any type to x because the type of x
should be 1 Int, 2 Boolean, and 3 Int => Int, simultaneously.

How can we resolve this problem? Polymorphism!

Polymorphism is to use a single entity as multiple types.

There are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

Among them, let’s learn parametric polymorphism in this lecture.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 5 / 39

Polymorphism
In the following Scala program, f is an identity function and we want to
pass 1 1, 2 true, and 3 (y: Int) => y to f, respectively.

def f(x: ???): ??? = x;
f(1); f(true); f((y: Int) => y + 1)

Unfortunately, we cannot assign any type to x because the type of x
should be 1 Int, 2 Boolean, and 3 Int => Int, simultaneously.

How can we resolve this problem? Polymorphism!

Polymorphism is to use a single entity as multiple types.
There are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

Among them, let’s learn parametric polymorphism in this lecture.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 5 / 39

Polymorphism
In the following Scala program, f is an identity function and we want to
pass 1 1, 2 true, and 3 (y: Int) => y to f, respectively.

def f(x: ???): ??? = x;
f(1); f(true); f((y: Int) => y + 1)

Unfortunately, we cannot assign any type to x because the type of x
should be 1 Int, 2 Boolean, and 3 Int => Int, simultaneously.

How can we resolve this problem? Polymorphism!

Polymorphism is to use a single entity as multiple types.
There are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

Among them, let’s learn parametric polymorphism in this lecture.
COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 5 / 39

Parametric Polymorphism

Definition (Parametric Polymorphism)
Parametric polymorphism is a form of polymorphism by introducing
type variables and instantiating them with type arguments.

def f[T](x: T): T = x;
f[Int](1); f[Boolean](true); f[Int => Int]((y: Int) => y)

The type T is a type variable (or type parameter), and it can be
instantiated to any types (e.g., Int, Boolean, and Int => Int) by
passing them as type arguments.

In general, parametric polymorphism is applied to functions and data
types, and they are sometimes called generic functions and generic
data types, respectively.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 6 / 39

Parametric Polymorphism

Definition (Parametric Polymorphism)
Parametric polymorphism is a form of polymorphism by introducing
type variables and instantiating them with type arguments.

def f[T](x: T): T = x;
f[Int](1); f[Boolean](true); f[Int => Int]((y: Int) => y)

The type T is a type variable (or type parameter), and it can be
instantiated to any types (e.g., Int, Boolean, and Int => Int) by
passing them as type arguments.

In general, parametric polymorphism is applied to functions and data
types, and they are sometimes called generic functions and generic
data types, respectively.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 6 / 39

Parametric Polymorphism

Definition (Parametric Polymorphism)
Parametric polymorphism is a form of polymorphism by introducing
type variables and instantiating them with type arguments.

def f[T](x: T): T = x;
f[Int](1); f[Boolean](true); f[Int => Int]((y: Int) => y)

The type T is a type variable (or type parameter), and it can be
instantiated to any types (e.g., Int, Boolean, and Int => Int) by
passing them as type arguments.

In general, parametric polymorphism is applied to functions and data
types, and they are sometimes called generic functions and generic
data types, respectively.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 6 / 39

Parametric Polymorphism
Many modern typed languages support parametric polymorphism:
• Scala

def f[T](x: T): T = x

• C++

template <typename T> T f(T x) { return x; }

• Rust

fn f<T>(x: T) -> T { return x; }

• Haskell

f :: a -> a
f x = x

• . . .

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 7 / 39

Contents
1. Parametric Polymorphism

2. PTFAE – TFAE with Parametric Polymorphism
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for PTFAE

4. Type Checker and Typing Rules
Type Environment for Type Variables
Well-Formedness of Types
Function Definition
Type Abstraction
Type Application
Function Application

5. Type Soundness of PTFAE
Type Abstraction - Revised

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 8 / 39

PTFAE – TFAE with Parametric Polymorphism
Now, let’s extend TFAE into PTFAE to support parametric
polymorphism.

/* PTFAE */
val f = forall[T] { (x: T) => x } // [T](T => T)
val x = f[Number](42) // Number
val y = f[Number => Number](f[Number]) // Number => Number
val z = f[[T](T => T)](f) // [T](T => T)
...

forall[t] e parameterizes an expression e with a type variable t, and
e[t] instantiates the type variable with a type t of an expression e.

For PTFAE, we need to extend expressions of TFAE with

1 type abstraction (forall)
2 type application
3 polymorphic type

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 9 / 39

PTFAE – TFAE with Parametric Polymorphism
Now, let’s extend TFAE into PTFAE to support parametric
polymorphism.

/* PTFAE */
val f = forall[T] { (x: T) => x } // [T](T => T)
val x = f[Number](42) // Number
val y = f[Number => Number](f[Number]) // Number => Number
val z = f[[T](T => T)](f) // [T](T => T)
...

forall[t] e parameterizes an expression e with a type variable t, and
e[t] instantiates the type variable with a type t of an expression e.

For PTFAE, we need to extend expressions of TFAE with

1 type abstraction (forall)
2 type application
3 polymorphic type

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 9 / 39

Concrete Syntax
For PTFAE, we need to extend expressions of TFAE with

1 type abstraction (forall)
2 type application
3 polymorphic type

We can extend the concrete syntax of TFAE as follows:

// expressions
<expr> ::= ...

| "forall" "[" <id> "]" <expr>
| <expr> "[" <type> "]"

// types
<type> ::= ...

| <id>
| "[" <id> "]" <type>

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 10 / 39

Concrete Syntax
For PTFAE, we need to extend expressions of TFAE with

1 type abstraction (forall)
2 type application
3 polymorphic type

We can extend the concrete syntax of TFAE as follows:

// expressions
<expr> ::= ...

| "forall" "[" <id> "]" <expr>
| <expr> "[" <type> "]"

// types
<type> ::= ...

| <id>
| "[" <id> "]" <type>

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 10 / 39

Abstract Syntax
Expressions E ∋ e ::= . . .

| ∀α.e (TypeAbs)
| e[τ] (TypeApp)

Types T ∋ τ ::= . . .
| α (VarT)
| ∀α.τ (PolyT)

Type Variables α ∈ Xα (String)

enum Expr:
...
case TypeAbs(name: String, body: Expr)
case TypeApp(expr: Expr, ty: Type)

enum Type:
...
case VarT(name: String)
case PolyT(name: String, ty: Type)

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 11 / 39

Contents
1. Parametric Polymorphism

2. PTFAE – TFAE with Parametric Polymorphism
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for PTFAE

4. Type Checker and Typing Rules
Type Environment for Type Variables
Well-Formedness of Types
Function Definition
Type Abstraction
Type Application
Function Application

5. Type Soundness of PTFAE
Type Abstraction - Revised

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 12 / 39

Interpreter and Natural Semantics
For PTFAE, we need to 1) implement the interpreter with environments:

def interp(expr: Expr, env: Env): Value = ???

and 2) define the natural semantics with environments:

σ ⊢ e⇒ v

with a new kind of values called type abstraction values:

Values V ∋ v ::= n (NumV)
| ⟨λx.e, σ⟩ (CloV)
| ⟨∀α.e, σ⟩ (TypeAbsV)

enum Value:
case NumV(number: BigInt)
case CloV(param: String, body: Expr, env: Env)
case TypeAbsV(name: String, body: Expr, env: Env)

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 13 / 39

Interpreter and Natural Semantics
For PTFAE, we need to 1) implement the interpreter with environments:

def interp(expr: Expr, env: Env): Value = ???

and 2) define the natural semantics with environments:

σ ⊢ e⇒ v

with a new kind of values called type abstraction values:

Values V ∋ v ::= n (NumV)
| ⟨λx.e, σ⟩ (CloV)
| ⟨∀α.e, σ⟩ (TypeAbsV)

enum Value:
case NumV(number: BigInt)
case CloV(param: String, body: Expr, env: Env)
case TypeAbsV(name: String, body: Expr, env: Env)

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 13 / 39

Type Abstraction

def interp(expr: Expr, env: Env): Value = expr match
...

case TypeAbs(name, body) => TypeAbsV(name, body, env)

case TypeApp(expr, ty) => interp(expr, env) match
case TypeAbsV(name, body, fenv) => interp(body, fenv)
case v => error(s"not a type abstraction: ${v.str}")

σ ⊢ e⇒ v

TypeAbs
σ ⊢ ∀α.e⇒ ⟨∀α.e, σ⟩

TypeApp
σ ⊢ e⇒ ⟨∀α.e′, σ′⟩ σ′ ⊢ e′ ⇒ v

σ ⊢ e[τ]⇒ v

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 14 / 39

Contents
1. Parametric Polymorphism

2. PTFAE – TFAE with Parametric Polymorphism
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for PTFAE

4. Type Checker and Typing Rules
Type Environment for Type Variables
Well-Formedness of Types
Function Definition
Type Abstraction
Type Application
Function Application

5. Type Soundness of PTFAE
Type Abstraction - Revised

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 15 / 39

Type Checker and Typing Rules
Let’s 1 design typing rules of PTFAE to define when an expression is
well-typed in the form of:

Γ ⊢ e : τ

and 2 implement a type checker in Scala according to typing rules:

def typeCheck(expr: Expr, tenv: TypeEnv): Type = ???

The type checker returns the type of e if it is well-typed, or rejects it and
throws a type error otherwise.

Similar to TFAE, we will keep track of the variable types using a type
environment Γ as a mapping from variable names to their types.

Type Environments Γ ∈ X fin−→ T (TypeEnv)

type TypeEnv = Map[String, Type]

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 16 / 39

Type Environment for Type Variables
However, we need additional information in type environments to keep
track of which type variables are defined by type abstractions.

Type Environments Γ ∈ (X fin−→ T)× P(Xα) (TypeEnv)

Γ[α] is an extension of Γ with the type variable α defined.

case class TypeEnv(
vars: Map[String, Type] = Map(),
tys: Set[String] = Set(),

) {
def addVar(pair: (String, Type)): TypeEnv =

TypeEnv(vars + pair, tys)
def addVars(pairs: Iterable[(String, Type)]): TypeEnv =

TypeEnv(vars ++ pairs, tys)
def addType(name: String): TypeEnv = TypeEnv(vars, tys + name)

}

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 17 / 39

Type Environment for Type Variables
However, we need additional information in type environments to keep
track of which type variables are defined by type abstractions.

Type Environments Γ ∈ (X fin−→ T)× P(Xα) (TypeEnv)

Γ[α] is an extension of Γ with the type variable α defined.

case class TypeEnv(
vars: Map[String, Type] = Map(),
tys: Set[String] = Set(),

) {
def addVar(pair: (String, Type)): TypeEnv =

TypeEnv(vars + pair, tys)
def addVars(pairs: Iterable[(String, Type)]): TypeEnv =

TypeEnv(vars ++ pairs, tys)
def addType(name: String): TypeEnv = TypeEnv(vars, tys + name)

}

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 17 / 39

Well-Formedness of Types
Similar to ATFAE, we need to check the well-formedness of types with
type environment to prevent the use of not-defined type variables.

Γ ⊢ τ

Γ ⊢ num

Γ ⊢ τ Γ ⊢ τ ′

Γ ⊢ τ → τ ′
α ∈ Domain(Γ)

Γ ⊢ α

Γ[α] ⊢ τ

Γ ⊢ ∀α.τ

def mustValid(ty: Type, tenv: TypeEnv): Type = ty match
case NumT =>

NumT
case ArrowT(pty, rty) =>

ArrowT(mustValid(pty, tenv), mustValid(rty, tenv))
case VarT(name) =>

if (!tenv.tys.contains(name)) error(s"unknown type: $name")
VarT(name)

case PolyT(name, ty) =>
PolyT(name, mustValid(ty, tenv.addType(name)))

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 18 / 39

Function Definition

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case Fun(param, paramTy, body) =>

mustValid(paramTy, tenv)
ArrowT(paramTy, typeCheck(body, tenv.addVar(param -> paramTy)))

Γ ⊢ e : τ

τ−Fun
Γ ⊢ τ Γ[x : τ] ⊢ e : τ ′

Γ ⊢ λx:τ.e : τ → τ ′

Similar to ATFAE, we check the well-formedness of parameter types.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 19 / 39

Type Abstraction

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeAbs(name, body) =>

???

Γ ⊢ e : τ

τ−TypeAbs
???

Γ ⊢ ∀α.e : ???

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 20 / 39

Type Abstraction

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeAbs(name, body) =>

typeCheck(body, ???)

Γ ⊢ e : τ

τ−TypeAbs
??? ⊢ e : ???

Γ ⊢ ∀α.e : ???

First, we need to check the body of a type abstraction.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 21 / 39

Type Abstraction

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeAbs(name, body) =>

typeCheck(body, tenv.addType(name))

Γ ⊢ e : τ

τ−TypeAbs
Γ[α] ⊢ e : τ

Γ ⊢ ∀α.e : ???

We need to extend the type environment with the type variable α.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 22 / 39

Type Abstraction

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeAbs(name, body) =>

PolyT(name, typeCheck(body, tenv.addType(name)))

Γ ⊢ e : τ

τ−TypeAbs
Γ[α] ⊢ e : τ

Γ ⊢ ∀α.e : ∀α.τ

The type of a type abstraction is a polymorphic type.

It is indeed type unsound, and we will fix it later in this lecture.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 23 / 39

Type Abstraction

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeAbs(name, body) =>

PolyT(name, typeCheck(body, tenv.addType(name)))

Γ ⊢ e : τ

τ−TypeAbs
Γ[α] ⊢ e : τ

Γ ⊢ ∀α.e : ∀α.τ

The type of a type abstraction is a polymorphic type.

It is indeed type unsound, and we will fix it later in this lecture.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 23 / 39

Type Application

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeApp(expr, ty) => ???

Γ ⊢ e : τ

τ−TypeApp
???

Γ ⊢ e[τ] : ???

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 24 / 39

Type Application

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeApp(expr, ty) => typeCheck(expr, tenv); ???

Γ ⊢ e : τ

τ−TypeApp
Γ ⊢ e : ???

Γ ⊢ e[τ] : ???

First, we need to check the type of e with the given type environment Γ.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 25 / 39

Type Application

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeApp(expr, ty) => typeCheck(expr, tenv) match

case PolyT(name, bodyTy) => ???
case t => error(s"not a polymorphic type: ${t.str}")

Γ ⊢ e : τ

τ−TypeApp
Γ ⊢ e : ∀α.τ ′ ???

Γ ⊢ e[τ] : ???

But, we need to allow type application only if the type of e is a
polymorphic type.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 26 / 39

Type Application

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeApp(expr, ty) => typeCheck(expr, tenv) match

case PolyT(name, bodyTy) => mustValid(ty, tenv); ???
case t => error(s"not a polymorphic type: ${t.str}")

Γ ⊢ e : τ

τ−TypeApp
Γ ⊢ e : ∀α.τ ′ Γ ⊢ τ

Γ ⊢ e[τ] : ???

We also need to check the well-formedness of type argument τ .

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 27 / 39

Type Application

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeApp(expr, ty) => typeCheck(expr, tenv) match

case PolyT(name, bodyTy) => subst(bodyTy, name, mustValid(ty, tenv))
case t => error(s"not a polymorphic type: ${t.str}")

Γ ⊢ e : τ

τ−TypeApp
Γ ⊢ e : ∀α.τ ′ Γ ⊢ τ

Γ ⊢ e[τ] : τ ′[α← τ]
Finally, we need to substitute the type variable α with the type argument
τ in the body type τ ′.

τ ′[α← τ] means replacing all occurrences of free type variable α in τ ′

with τ . For example,
(α→ β → (∀α.α)→ α)[α← num] = num→ β → (∀α.α)→ num

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 28 / 39

Type Application

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeApp(expr, ty) => typeCheck(expr, tenv) match

case PolyT(name, bodyTy) => subst(bodyTy, name, mustValid(ty, tenv))
case t => error(s"not a polymorphic type: ${t.str}")

Γ ⊢ e : τ

τ−TypeApp
Γ ⊢ e : ∀α.τ ′ Γ ⊢ τ

Γ ⊢ e[τ] : τ ′[α← τ]
Finally, we need to substitute the type variable α with the type argument
τ in the body type τ ′.

τ ′[α← τ] means replacing all occurrences of free type variable α in τ ′

with τ . For example,
(α→ β → (∀α.α)→ α)[α← num] = num→ β → (∀α.α)→ num

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 28 / 39

Type Application – Substitution
We can implement the substitution as follows:

def subst(bodyTy: Type, name: String, ty: Type): Type = bodyTy match
case NumT =>

NumT
case ArrowT(pty, rty) =>

ArrowT(subst(pty, name, ty), subst(rty, name, ty))
case VarT(x) =>

if (name == x) ty
else VarT(x)

case PolyT(x, bodyTy) =>
if (name == x) PolyT(x, bodyTy)
else PolyT(x, subst(bodyTy, name, ty))

Now, we can instantiate type variables with given types in specific types:

val ty = Type("T => U => (T) => T")
subst(ty, "T", NumT).str // "Number => U => (T) => Number"

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 29 / 39

Function Application

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case App(fun, arg) => typeCheck(fun, tenv) match

case ArrowT(paramTy, retTy) =>
mustSame(typeCheck(arg, tenv), paramTy)
retTy

case t => error(s"not a function type: ${t.str}")

Γ ⊢ e : τ

τ−App
Γ ⊢ e0 : τ1 → τ2 Γ ⊢ e1 : τ1

Γ ⊢ e0(e1) : τ2

While we can use the same rule in TFAE, but we can improve it.

/* PTFAE */
val f = ((x: [T](T => T)) => x[Number](7)) // ([T](T => T)) => Number
val x = forall[U] (x: U) => x // [U] (U => U)
f(x) // type checking failed: [T](T => T) != [U](U => U)

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 30 / 39

Function Application

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case App(fun, arg) => typeCheck(fun, tenv) match

case ArrowT(paramTy, retTy) =>
mustSame(typeCheck(arg, tenv), paramTy)
retTy

case t => error(s"not a function type: ${t.str}")

Γ ⊢ e : τ

τ−App
Γ ⊢ e0 : τ1 → τ2 Γ ⊢ e1 : τ1

Γ ⊢ e0(e1) : τ2

While we can use the same rule in TFAE, but we can improve it.

/* PTFAE */
val f = ((x: [T](T => T)) => x[Number](7)) // ([T](T => T)) => Number
val x = forall[U] (x: U) => x // [U] (U => U)
f(x) // type checking failed: [T](T => T) != [U](U => U)

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 30 / 39

Function Application – Equivalence of Types
Let’s define the equivalence (≡) of types as follows:

def isSame(lty: Type, rty: Type): Boolean = (lty, rty) match
case (NumT, NumT) => true
case (ArrowT(lpty, lrty), ArrowT(rpty, rrty)) =>

isSame(lpty, rpty) && isSame(lrty, rrty)
case (VarT(lname), VarT(rname)) => lname == rname
case (PolyT(lname, lty), PolyT(rname, rty)) =>

isSame(lty, subst(rty, rname, VarT(lname)))
case _ => false

def mustSame(l: Type, r: Type): Unit =
if (!isSame(l, r)) error(s"type mismatch: ${l.str} != ${r.str}")

τ ≡ τ

num ≡ num

τ1 ≡ τ ′
1 τ2 ≡ τ ′

2
(τ1 → τ2) ≡ (τ ′

1 → τ ′
2) α ≡ α

τ ≡ τ ′[α′ ← α]
∀α.τ ≡ ∀α′.τ ′

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 31 / 39

Function Application – Revised

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case App(fun, arg) => typeCheck(fun, tenv) match

case ArrowT(paramTy, retTy) =>
mustSame(typeCheck(arg, tenv), paramTy)
retTy

case t => error(s"not a function type: ${t.str}")

Γ ⊢ e : τ

τ−App
Γ ⊢ e0 : τ1 → τ2 Γ ⊢ e1 : τ3 τ1 ≡ τ3

Γ ⊢ e0(e1) : τ2

While we can use the same rule in TFAE, but we can improve it.

/* PTFAE */
val f = ((x: [T](T => T)) => x[Number](7)) // ([T](T => T)) => Number
val x = forall[U] (x: U) => x // [U] (U => U)
f(x) // well-typed: [T](T => T) == [U](U => U)

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 32 / 39

Contents
1. Parametric Polymorphism

2. PTFAE – TFAE with Parametric Polymorphism
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for PTFAE

4. Type Checker and Typing Rules
Type Environment for Type Variables
Well-Formedness of Types
Function Definition
Type Abstraction
Type Application
Function Application

5. Type Soundness of PTFAE
Type Abstraction - Revised

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 33 / 39

Recall: Type Soundness

Definition (Type Soundness)
A type system is sound if it guarantees that a well-typed program will
never cause a type error at run-time.

/* PTFAE */
val f = forall[U] (x: U) => {

val y = forall[U] x // U
y[Number => Number] // Number => Number

} // [U](U => (Number => Number))
val g = f[Number](1) // Number => Number
g(2) // Number

It throws a type error when evaluating 1(2) at run-time while this
expression is well-typed (i.e., unsound type system).

We can resolve this problem by forbidding the redefinition of same type
variable in the scope of type abstractions!

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 34 / 39

Recall: Type Soundness

Definition (Type Soundness)
A type system is sound if it guarantees that a well-typed program will
never cause a type error at run-time.

/* PTFAE */
val f = forall[U] (x: U) => {

val y = forall[U] x // U
y[Number => Number] // Number => Number

} // [U](U => (Number => Number))
val g = f[Number](1) // Number => Number
g(2) // Number

It throws a type error when evaluating 1(2) at run-time while this
expression is well-typed (i.e., unsound type system).

We can resolve this problem by forbidding the redefinition of same type
variable in the scope of type abstractions!

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 34 / 39

Recall: Type Soundness

Definition (Type Soundness)
A type system is sound if it guarantees that a well-typed program will
never cause a type error at run-time.

/* PTFAE */
val f = forall[U] (x: U) => {

val y = forall[U] x // U
y[Number => Number] // Number => Number

} // [U](U => (Number => Number))
val g = f[Number](1) // Number => Number
g(2) // Number

It throws a type error when evaluating 1(2) at run-time while this
expression is well-typed (i.e., unsound type system).

We can resolve this problem by forbidding the redefinition of same type
variable in the scope of type abstractions!

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 34 / 39

Recall: Type Soundness

Definition (Type Soundness)
A type system is sound if it guarantees that a well-typed program will
never cause a type error at run-time.

/* PTFAE */
val f = forall[U] (x: U) => {

val y = forall[U] x // U
y[Number => Number] // Number => Number

} // [U](U => (Number => Number))
val g = f[Number](1) // Number => Number
g(2) // Number

It throws a type error when evaluating 1(2) at run-time while this
expression is well-typed (i.e., unsound type system).

We can resolve this problem by forbidding the redefinition of same type
variable in the scope of type abstractions!

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 34 / 39

Type Abstraction - Revised

def typeCheck(expr: Expr, tenv: TypeEnv): Type = expr match
...
case TypeAbs(name, body) =>

if (tenv.tys.contains(name)) error(s"already defined type: $name")
PolyT(name, typeCheck(body, tenv.addType(name)))

Γ ⊢ e : τ

τ−TypeAbs
α /∈ Domain(Γ) Γ[α] ⊢ e : τ

Γ ⊢ ∀α.e : ∀α.τ

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 35 / 39

Summary
1. Parametric Polymorphism

2. PTFAE – TFAE with Parametric Polymorphism
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for PTFAE

4. Type Checker and Typing Rules
Type Environment for Type Variables
Well-Formedness of Types
Function Definition
Type Abstraction
Type Application
Function Application

5. Type Soundness of PTFAE
Type Abstraction - Revised

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 36 / 39

Exercise #14

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/ptfae

• Please see above document on GitHub:
• Implement typeCheck function.
• Implement interp function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 37 / 39

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/ptfae

Homework #4

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/battery

• Please see above document on GitHub:
• Implement typeCheck function.
• Implement interp functions.

• The due date is 23:59 on Dec. 11 (Wed.).

• Please only submit Implementation.scala file to Blackboard.

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 38 / 39

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/battery
https://kulms.korea.ac.kr/

Next Lecture
• Subtype Polymorphism

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 23 – Parametric Polymorphism November 27, 2024 39 / 39

https://plrg.korea.ac.kr

	Parametric Polymorphism
	PTFAE – TFAE with Parametric Polymorphism
	Concrete Syntax
	Abstract Syntax

	Interpreter and Natural Semantics for PTFAE
	Type Checker and Typing Rules
	Type Environment for Type Variables
	Well-Formedness of Types
	Function Definition
	Type Abstraction
	Type Application
	Function Application

	Type Soundness of PTFAE
	Type Abstraction - Revised

