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Recall
• Polymorphism is to use a single entity as multiple types, and there

are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

• PTFAE – TFAE with parametric polymorphism.

• STFAE – TFAE with subtype polymorphism.

• In this lecture, we will learn type inference.
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Type Inference

Definition (Type Inference)
Type inference is the process of automatically inferring the types of
expressions.

The goal of type inference algorithm is to infer the type of an expression
without explicit type annotations given by programmers.

Let’s consider the following RFAE expression:

/* RFAE */
def sum(x) = if (x < 1) 0 else x + sum(x - 1)
sum

How can we automatically infer the type of sum?

1 Introduce type variables to denote unknown types
2 Collect the type constraints on the types
3 Find a solution (substitution of type variables) to the constraints
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1. Example 1 – sum

2. Example 2 – app

3. Example 3 – id
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Type Environment
X T
x ???
sum ???
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 -
T2 -

Let’s define type variables for unknown types.
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -
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sum

T1

Type Environment
X T
x T1
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T2 -
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 -
T2 -
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

The operands of < must be of type Number.
So, we collected a type constraint: T1 == Number.
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

T1

T1 => T2 Number

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

The operands of - must be of type Number.
We collected a type constraint: T1 == Number.
But, it is not a new constraint.
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

T1 T2

T1 => T2 Number

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

The argument type should be equal to the parameter type.
We collected a type constraint: T1 == Number.
Again, it is not a new constraint.
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number

The operands of + must be of type Number.
We collected type constraints: T1 == Number and T2 == Number.
The second one is a new constraint!
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Number

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 19 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Number

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

T1 => T2

Type Environment
X T
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number

The type of sum is T1 => T2. Using the solution inferred by the collected
constraints, we can instantiate it to Number => Number.
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Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Number

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

T1 => T2

Type Environment
X T
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number

/* TRFAE */
def sum(x: Number): Number = if (x < 1) 0 else x + sum(x - 1)
sum
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Contents

1. Example 1 – sum

2. Example 2 – app
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Example 2 – app
Let’s infer the type of the following FAE expression:

/* FAE */
val app = n => f => f(n)
app(42)(x => x)

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

Type Environment
X T
n T1

Solution
Xα T
T1 -

Let’s define a new type variable T1 for the parameter n.
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

T2

Type Environment
X T
n T1
f T2

Solution
Xα T
T1 -
T2 -

Let’s define a new type variable T2 for the parameter f.
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

T2

T2

Type Environment
X T
n T1
f T2

Solution
Xα T
T1 -
T2 -
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

T2

T2 T1

Type Environment
X T
n T1
f T2

Solution
Xα T
T1 -
T2 -
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

T2 T3

T2 T1

Type Environment
X T
n T1
f T2

Solution
Xα T
T1 -
T2 T1 => T3
T3 -

The type T2 of f should be in the form of T1 => ???.
Let’s define a new type variable T3 for ??? (the return type of f).
So, we collected a type constraint: T2 == T1 => T3.
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 T2 => T3

T2 T3

T2 T1

Type Environment
X T
n T1

Solution
Xα T
T1 -
T2 T1 => T3
T3 -
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T1=>T2=>T3

Type Environment
X T
app T1 => T2 => T3

Solution
Xα T
T1 -
T2 T1 => T3
T3 -
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val
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n λ

f @

f n

app @

@

app 42

λ
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T2 => T3

T1=>T2=>T3 Number

Type Environment
X T
app T1 => T2 => T3

Solution
Xα T
T1 Number
T2 T1 => T3
T3 -

The parameter type T1 should be equal to the argument type Number.
So, we collected a type constraint: T1 == Number.
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T2 => T3

T1=>T2=>T3 Number T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 -
T4 -

Let’s define a new type variable T4 for the parameter x.
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T2 => T3

T1=>T2=>T3 Number T4 T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 -
T4 -
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T2 => T3
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T4 => T4

T4 T4

Type Environment
X T
app T1 => T2 => T3
x T4
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Xα T
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T3

T2 => T3

T1=>T2=>T3 Number

T4 => T4

T4 T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 Number
T4 Number

The parameter type T2 should be equal to argument type T4 => T4.
We collected type constraints: T3 == Number and T4 == Number.
Finally, the entire expression has type T3 (= Number).
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Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T3

T2 => T3

T1=>T2=>T3 Number

T4 => T4

T4 T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 Number
T4 Number

/* TFAE */
val app = (n: Number) => (f: Number => Number) => f(n)
app(42)((x: Number) => x)
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Example 3 – id
Let’s infer the type of the following FAE expression:

/* FAE */
val id = x => x
val n = id(42)
val b = id(true)
b

val

λ

x x

id val

@

id 42

n val

@

id true

b b
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1

Type Environment
X T
x T1

Solution
Xα T
T1 -

Let’s define a new type variable T1 for the parameter x.
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Type Environment
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

Type Environment
X T

Solution
Xα T
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -

Let’s generalize the type T1 => T1 into a polymorphic type for id with
type variable T1 as a type parameter.
We call this let-polymorphism because it only introduces polymorphism
for the let-binding (e.g., val).
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

T2 => T2

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -
T2 -

Let’s define a new type variable T2 to instantiate the type variable T1.
And, substitute T1 with T2.
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

T2 => T2 Number

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -
T2 -
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -
T2 Number

The parameter type T2 should be equal to argument type Number.
We collected a type constraint: T2 == Number.
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number

T2 is not a free type variable because it actually represents Number.
So, we will not introduce a polymorphic type in this case.
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

T3 => T3

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number
T3 -

Let’s define a new type variable T3 to instantiate the type variable T1.
And, substitute T1 with T3.
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

T3 => T3 Boolean

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number
T3 -
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number T3

T3 => T3 Boolean

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number
T3 Boolean

The parameter type T3 should be equal to argument type Boolean.
We collected a type constraint: T3 == Boolean.
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number T3

T3 => T3 Boolean

Type Environment
X T
id [T1] { T1 => T1 }
n T2
b T3

Solution
Xα T
T1 -
T2 Number
T3 Boolean

T3 is not a free type variable because it actually represents Boolean.
So, we will not introduce a polymorphic type in this case.
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number T3

T3 => T3 Boolean

T3

Type Environment
X T
id [T1] { T1 => T1 }
n T2
b T3

Solution
Xα T
T1 -
T2 Number
T3 Boolean

Finally, the entire expression has type T3 (= Boolean).
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Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

T3

T2

T2 => T2 Number

T3

T3

T3 => T3 Boolean

T3

Type Environment
X T
id [T1] { T1 => T1 }
n T2
b T3

Solution
Xα T
T1 -
T2 Number
T3 Boolean

/* PTFAE */
val id = forall[T] { (x: T) => x }
val n = id[Number](42)
val b = id[Boolean](true)
b
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Summary

1. Example 1 – sum

2. Example 2 – app

3. Example 3 – id
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Next Lecture
• Type Inference (2)

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr
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