
Lecture 25 – Type Inference (1)
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 1 / 57



Recall
• Polymorphism is to use a single entity as multiple types, and there

are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

• PTFAE – TFAE with parametric polymorphism.

• STFAE – TFAE with subtype polymorphism.

• In this lecture, we will learn type inference.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 2 / 57



Recall
• Polymorphism is to use a single entity as multiple types, and there

are various kinds of polymorphism:
• Parametric polymorphism
• Subtype polymorphism
• Ad-hoc polymorphism
• . . .

• PTFAE – TFAE with parametric polymorphism.

• STFAE – TFAE with subtype polymorphism.

• In this lecture, we will learn type inference.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 2 / 57



Type Inference

Definition (Type Inference)
Type inference is the process of automatically inferring the types of
expressions.

The goal of type inference algorithm is to infer the type of an expression
without explicit type annotations given by programmers.

Let’s consider the following RFAE expression:

/* RFAE */
def sum(x) = if (x < 1) 0 else x + sum(x - 1)
sum

How can we automatically infer the type of sum?

1 Introduce type variables to denote unknown types
2 Collect the type constraints on the types
3 Find a solution (substitution of type variables) to the constraints

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 3 / 57



Type Inference

Definition (Type Inference)
Type inference is the process of automatically inferring the types of
expressions.

The goal of type inference algorithm is to infer the type of an expression
without explicit type annotations given by programmers.

Let’s consider the following RFAE expression:

/* RFAE */
def sum(x) = if (x < 1) 0 else x + sum(x - 1)
sum

How can we automatically infer the type of sum?

1 Introduce type variables to denote unknown types
2 Collect the type constraints on the types
3 Find a solution (substitution of type variables) to the constraints

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 3 / 57



Type Inference

Definition (Type Inference)
Type inference is the process of automatically inferring the types of
expressions.

The goal of type inference algorithm is to infer the type of an expression
without explicit type annotations given by programmers.

Let’s consider the following RFAE expression:

/* RFAE */
def sum(x) = if (x < 1) 0 else x + sum(x - 1)
sum

How can we automatically infer the type of sum?

1 Introduce type variables to denote unknown types
2 Collect the type constraints on the types
3 Find a solution (substitution of type variables) to the constraints

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 3 / 57



Type Inference

Definition (Type Inference)
Type inference is the process of automatically inferring the types of
expressions.

The goal of type inference algorithm is to infer the type of an expression
without explicit type annotations given by programmers.

Let’s consider the following RFAE expression:

/* RFAE */
def sum(x) = if (x < 1) 0 else x + sum(x - 1)
sum

How can we automatically infer the type of sum?

1 Introduce type variables to denote unknown types
2 Collect the type constraints on the types
3 Find a solution (substitution of type variables) to the constraints
COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 3 / 57



Contents

1. Example 1 – sum

2. Example 2 – app

3. Example 3 – id

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 4 / 57



Contents

1. Example 1 – sum

2. Example 2 – app

3. Example 3 – id

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 5 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Type Environment
X T
x ???
sum ???

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 6 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 -
T2 -

Let’s define type variables for unknown types.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 7 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

T1

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 -
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 8 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 -
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 9 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

The operands of < must be of type Number.
So, we collected a type constraint: T1 == Number.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 10 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 11 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

T1

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 12 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

T1

T1 => T2

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 13 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

T1

T1 => T2

T1

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 14 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

T1

T1 => T2

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 15 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

T1

T1 => T2 Number

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

The operands of - must be of type Number.
We collected a type constraint: T1 == Number.
But, it is not a new constraint.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 16 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number

T1 T2

T1 => T2 Number

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 -

The argument type should be equal to the parameter type.
We collected a type constraint: T1 == Number.
Again, it is not a new constraint.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 17 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number

The operands of + must be of type Number.
We collected type constraints: T1 == Number and T2 == Number.
The second one is a new constraint!

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 18 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Number

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 19 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Number

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

T1 => T2

Type Environment
X T
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number

The type of sum is T1 => T2. Using the solution inferred by the collected
constraints, we can instantiate it to Number => Number.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 20 / 57



Example 1 – sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Number

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

T1 => T2

Type Environment
X T
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number

/* TRFAE */
def sum(x: Number): Number = if (x < 1) 0 else x + sum(x - 1)
sum

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 21 / 57



Contents

1. Example 1 – sum

2. Example 2 – app

3. Example 3 – id

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 22 / 57



Example 2 – app
Let’s infer the type of the following FAE expression:

/* FAE */
val app = n => f => f(n)
app(42)(x => x)

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 23 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

Type Environment
X T
n T1

Solution
Xα T
T1 -

Let’s define a new type variable T1 for the parameter n.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 24 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

T2

Type Environment
X T
n T1
f T2

Solution
Xα T
T1 -
T2 -

Let’s define a new type variable T2 for the parameter f.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 25 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

T2

T2

Type Environment
X T
n T1
f T2

Solution
Xα T
T1 -
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 26 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

T2

T2 T1

Type Environment
X T
n T1
f T2

Solution
Xα T
T1 -
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 27 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1

T2 T3

T2 T1

Type Environment
X T
n T1
f T2

Solution
Xα T
T1 -
T2 T1 => T3
T3 -

The type T2 of f should be in the form of T1 => ???.
Let’s define a new type variable T3 for ??? (the return type of f).
So, we collected a type constraint: T2 == T1 => T3.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 28 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 T2 => T3

T2 T3

T2 T1

Type Environment
X T
n T1

Solution
Xα T
T1 -
T2 T1 => T3
T3 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 29 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

Type Environment
X T

Solution
Xα T
T1 -
T2 T1 => T3
T3 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 30 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

Type Environment
X T
app T1 => T2 => T3

Solution
Xα T
T1 -
T2 T1 => T3
T3 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 31 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T1=>T2=>T3

Type Environment
X T
app T1 => T2 => T3

Solution
Xα T
T1 -
T2 T1 => T3
T3 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 32 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T1=>T2=>T3 Number

Type Environment
X T
app T1 => T2 => T3

Solution
Xα T
T1 -
T2 T1 => T3
T3 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 33 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T2 => T3

T1=>T2=>T3 Number

Type Environment
X T
app T1 => T2 => T3

Solution
Xα T
T1 Number
T2 T1 => T3
T3 -

The parameter type T1 should be equal to the argument type Number.
So, we collected a type constraint: T1 == Number.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 34 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T2 => T3

T1=>T2=>T3 Number T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 -
T4 -

Let’s define a new type variable T4 for the parameter x.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 35 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T2 => T3

T1=>T2=>T3 Number T4 T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 -
T4 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 36 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T2 => T3

T1=>T2=>T3 Number

T4 => T4

T4 T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 -
T4 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 37 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T3

T2 => T3

T1=>T2=>T3 Number

T4 => T4

T4 T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 Number
T4 Number

The parameter type T2 should be equal to argument type T4 => T4.
We collected type constraints: T3 == Number and T4 == Number.
Finally, the entire expression has type T3 (= Number).

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 38 / 57



Example 2 – app

val

λ

n λ

f @

f n

app @

@

app 42

λ

x x

T1 => T2 => T3

T1 T2 => T3

T2 T3

T2 T1

T3

T2 => T3

T1=>T2=>T3 Number

T4 => T4

T4 T4

Type Environment
X T
app T1 => T2 => T3
x T4

Solution
Xα T
T1 Number
T2 T1 => T3
T3 Number
T4 Number

/* TFAE */
val app = (n: Number) => (f: Number => Number) => f(n)
app(42)((x: Number) => x)

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 39 / 57



Contents

1. Example 1 – sum

2. Example 2 – app

3. Example 3 – id

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 40 / 57



Example 3 – id
Let’s infer the type of the following FAE expression:

/* FAE */
val id = x => x
val n = id(42)
val b = id(true)
b

val

λ

x x

id val

@

id 42

n val

@

id true

b b

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 41 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1

Type Environment
X T
x T1

Solution
Xα T
T1 -

Let’s define a new type variable T1 for the parameter x.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 42 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 T1

Type Environment
X T
x T1

Solution
Xα T
T1 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 43 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

Type Environment
X T

Solution
Xα T
T1 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 44 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -

Let’s generalize the type T1 => T1 into a polymorphic type for id with
type variable T1 as a type parameter.
We call this let-polymorphism because it only introduces polymorphism
for the let-binding (e.g., val).

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 45 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

T2 => T2

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -
T2 -

Let’s define a new type variable T2 to instantiate the type variable T1.
And, substitute T1 with T2.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 46 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

T2 => T2 Number

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -
T2 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 47 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -
T2 Number

The parameter type T2 should be equal to argument type Number.
We collected a type constraint: T2 == Number.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 48 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number

T2 is not a free type variable because it actually represents Number.
So, we will not introduce a polymorphic type in this case.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 49 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

T3 => T3

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number
T3 -

Let’s define a new type variable T3 to instantiate the type variable T1.
And, substitute T1 with T3.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 50 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

T3 => T3 Boolean

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number
T3 -

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 51 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number T3

T3 => T3 Boolean

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number
T3 Boolean

The parameter type T3 should be equal to argument type Boolean.
We collected a type constraint: T3 == Boolean.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 52 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number T3

T3 => T3 Boolean

Type Environment
X T
id [T1] { T1 => T1 }
n T2
b T3

Solution
Xα T
T1 -
T2 Number
T3 Boolean

T3 is not a free type variable because it actually represents Boolean.
So, we will not introduce a polymorphic type in this case.

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 53 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number T3

T3 => T3 Boolean

T3

Type Environment
X T
id [T1] { T1 => T1 }
n T2
b T3

Solution
Xα T
T1 -
T2 Number
T3 Boolean

Finally, the entire expression has type T3 (= Boolean).

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 54 / 57



Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

T3

T2

T2 => T2 Number

T3

T3

T3 => T3 Boolean

T3

Type Environment
X T
id [T1] { T1 => T1 }
n T2
b T3

Solution
Xα T
T1 -
T2 Number
T3 Boolean

/* PTFAE */
val id = forall[T] { (x: T) => x }
val n = id[Number](42)
val b = id[Boolean](true)
b

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 55 / 57



Summary

1. Example 1 – sum

2. Example 2 – app

3. Example 3 – id

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 56 / 57



Next Lecture
• Type Inference (2)

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 25 – Type Inference (1) December 4, 2024 57 / 57

https://plrg.korea.ac.kr

	Example 1 – [language=Scala, basicstyle=]!sum!
	Example 2 – [language=Scala, basicstyle=]!app!
	Example 3 – [language=Scala, basicstyle=]!id!

