Lecture 26 — Type Inference (2)

COSE212: Programming Languages

Jihyeok Park

VNPLRG

2024 Fall

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Recall ’VNPLRG

® Type inference is the process of automatically inferring the types of
expressions.

® We have seen three examples to learn how the type inference works.

/* RFAE %/ def sum(x) = if (x < 1) 0 else x + sum(x - 1); sum

/* FAE %/ val app = n => f => f(n); app(42) (x => x)

/* FAE */ val id = x => x; val n = id(42); val b = id(true); b

® In this lecture, let's learn the details of the type inference algorithm.

e TIFAE — TRFAE with type inference.

® Type Checker and Typing Rules with Type Inference
® |Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Contents ’VNPLRG

1. Type Checker and Typing Rules with Type Inference
Solutions for Type Constraints
Numbers
Additions
Conditionals
Immutable Variable Definitions and Identifier Lookup
Function Definitions
Recursive Function Definitions
Function Applications

2. Type Unification
Type Resolving
Occurrence Checking
Type Unification

3. Type Inference with Let-Polymorphism
Type Generalization
Type Instantiation

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Contents ’VNPLRG

1. Type Checker and Typing Rules with Type Inference
Solutions for Type Constraints
Numbers
Additions
Conditionals
Immutable Variable Definitions and Identifier Lookup
Function Definitions
Recursive Function Definitions
Function Applications

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Type Checker and Typing Rules IPLRG

Let's @ design typing rules of TIFAE to define when an expression is

well-typed in the form of:

and @ implement a type checker in Scala according to typing rules:

def typeCheck(expr: Expr, tenv: TypeEnv): Type = 777

The type checker returns the type of e if it is well-typed, or rejects it and
throws a type error otherwise.

We will keep track of the variable types using a type environment I" as
a mapping from variable names to their types.

Type Environments I' e '=X fin, (TypeEnv)

type TypeEnv = Map[String, Typel

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Recall: Example 1 — sum 7VPLRG

In addition, we need to keep track of the solution for type constraints
over type variables to infer the types of expressions.

/* RFAE %/ def sum(x) = if (x < 1) 0 else x + sum(x - 1); sum

Type Environment
X [T |
X T1
sum | T1 => T2

Solution
Bl
T1 Number

T2 Number

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Solutions for Type Constraints 7V PLRG

A solution is a mapping from type variables to types or e.

Types T> 7:=num|bool|7—7|a (Type)
Solutions ¥ € V=X, ™ (Tw{e}) (Solution)
Type Variables a € X, (Int)

type Solution = Map[Int, Option[Typell

Note that e (None) represents a not yet solved (free) type variable.

Now, we have new forms of type checker and typing rules.

def typeCheck(expr: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = 777

I'ykFe:r9

Similar to the memory passing in MFAE for mutation, we will pass the
solution ¥ and update it during type checking.

COSE212 @ Korea University Lecture 26 — Type Inference (2)

December 9, 2024

Numbers ’VNPLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match

case Num(n) => (NumT, sol)

ybe:rm vy

T',vFn:num ¢

7—Num

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Additions ’VNPLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match

case Add(1l, r) =>
val (1ty, soll) = typeCheck(l, tenv, sol)
val (rty, sol2) = typeCheck(r, tenv, soll)
val sol3 = unify(lty, NumT, sol2)
val sol4 = unify(rty, NumT, sol3)

(NumT, sol4d)
ybe:rm v

Lo eq 1,91 L9 - eg 12,19
unify(7, num, o) = 3 unify(7e, num, 3) = 14
Ij,@bo ~ e1 +eg: nlnn,1b4

T7—Add

The unify function that takes two types must be the same and updates
the given solution. We will see how it works later.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Conditionals ’VNPLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match

case If(c, t, e) =>
val (cty, soll) = typeCheck(c, tenv, sol)
val (tty, sol2) = typeCheck(t, tenv, soll)
val (ety, sol3) = typeCheck(e, tenv, sol2)
val sol4 = unify(cty, BoolT, sol3)
val sol5 = unify(tty, ety, sol4d)

(tty, solb)
I'ykFe:rm9

Fﬂﬂ"@ci%ﬂﬁc Fawc}_et:Ttth F:wtl_ee:Tevwe
unify(7e, bool, 1) = ¢’ unify (7, 7e,¢') = "
[, if (e.) e else eq: 14,0

T—1f

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 10 /39

Immutable Variable Defs. and Identifier Lookup 'V PLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match

case Val(x, e, b) =>
val (ety, soll) = typeCheck(e, tenv, sol)
typeCheck(b, tenv + (x -> ety), soll)

case Id(x) =>
val ty = tenv.getOrElse(x, error(s"free identifier: $x"))

(ty, sol)
ybe:rmy
Lo e 1,91 Clz 7], - ea 12,90
T7—Val

T g val x =eq; ex: m,19

" € Domain(T")
Dyka:T(x),y

T—

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Function Definitions ’VNPLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
case Fun(p, b) =>

val (pty, soll) = newTypeVar(sol)
val (rty, sol2) = typeCheck(b, tenv + (p -> pty), soll)

(ArrowT(pty, rty), sol2)
iyke:ry

ap ¢ Lz : apl, Yoy — o] Fe: T,y
LoybAze:a,— 7,9

7—Fun

We need to introduce a new type variable o, for the parameter x.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Recursive Function Definitions ’VNPLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match

case Rec(f, p, b, s) =>
val (pty, soll) = newTypeVar(sol)
val (rty, sol2) = newTypeVar(soll)
val fty = ArrowT(pty, rty)
val tenvl = tenv + (f -> fty)
val tenv2 = tenvl + (p -> pty)
val (bty, sol3) = typeCheck(b, tenv2, sol2)
val sol4 = unify(bty, rty, sol3)

typeCheck(s, tenvl, sol4)
yke:r oy

ap, Q. & ap # o Iy =Tlxy: (op = o)
Iy =T1zp : o) Lo, oy > o, > o] eyt Ty, 1
unifY(TMO‘T?wb) =1y [, et 7,15
[, b def xp(xp) = ey €51 T, Vs

T—Rec

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Function Applications ’NPLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match

case App(f, a) =>
val (fty, soll) = typeCheck(f, tenv, sol)
val (aty, sol2) = typeCheck(a, tenv, soll)
val (rty, sol3) = newTypeVar(sol2)
val sol4 = unify(ArrowT(aty, rty), fty, sol3)

(rty, soléd)
ykFe:rv

Ly bep:Te iy Lop b eq: 7oy
Qe ¢ Ya unifY(Ta — aranywa[ar = .]) = wl

I Eep(eq) : ap, Y

T—App

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Contents

2. Type Unification
Type Resolving
Occurrence Checking
Type Unification

’VNPLRG

COSE212 @ Korea University Lecture 26 — Type Inference (2)

December 9, 2024

15 /39

Type Unification IPLRG

Definition (Type Unification)

Type unification is the process of updating a solution to make two types
equal. If the types are not unifiable, then this process fails and throws an
exception.

\mﬁwaxTx@yAw\

For example, if we unify a type variable o and the number type num, the
solution [c +— e] is updated to [« — num].

unify(o,num, @) = [a — num

Before, we define the type unification, we need to define the type
resolving and occurrence checking functions.
® Type resolving is the process of recursively resolving a type variable
to its representative type to deal with the type aliasing.
® Occurrence checking is the process of checking whether a type
variable occurs in a type to detect recursive types.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 16 /39

Type Resolving ’MPLRG

To understand why we need the type resolving function, let's consider the
following example:

unifY(ah num, wl) = ¢2

Solution Solution
1= |aq | a Yo = | @ | num
(%) (65} (6% as
Qs [] a3 o

If we update a1 to num in the solution), it misses the information that
a9 and asg are also num.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 17 /39

Type Resolving IPLRG

To understand why we need the type resolving function, let's consider the
following example:

unify(aq,num, 1) = 1o

Solution Solution
1= a1 | as Yo=|aq | a2
(%) (65} (6% as

as | e o3 | num

If we directly update 1 to num in the solution s, it misses the
information that oy and a3 are also num.

Instead, we need to resolve the type variable oy to find its representative
type (i.e., ag) and unify it with num to deal with the type aliasing.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 18 /39

Type Resolving ’MPLRG

We can define the type resolving function as follows:

‘resolve (TxU) — T‘

resolve(r,¢) ifr=aAy(a)="1
resolve(T, 1)) = { - otherwise

and implement it in Scala as follows:

def resolve(ty: Type, sol: Solution): Type = ty match
case VarT(k) => sol(k) match
case Some(ty) => resolve(ty, sol)
case None => ty
case _ => ty

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Occurrence Checking ’VPLRG

Let’s understand why we need the occurrence checking function:
unify(oq,num — aq, 1)) = ¢’

Can we unify a1 and num — a1 7 No! because it requires recursive types
not supported in our type system.

Let's define the occurrence checking function to detect type constraints
that require recursive types

‘occur (X x T x) —>bool‘

true if 7=«
occur(q, T,1) = ¢ occur(a, 7p,) V occur(a, 7,,¢) if 7= (1, = 7)
false otherwise

and implement it in Scala as follows:

def occurs(k: Int, ty: Type, sol: Solution): Boolean = resolve(ty, sol) match
case VarT(1l) => k ==
case ArrowT(pty, rty) => occurs(k, pty, sol) || occurs(k, rty, sol)
case _ => false

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 20/39

Type Unification 'V PLRG

Using the type resolving and occurrence checking functions, we could
define the type unification as a partial function:

‘unify:(TxTx\Il)A\I/‘

unify(m, 2, %) =

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 21/39

Type Unification 'V PLRG

Using the type resolving and occurrence checking functions, we could
define the type unification as a partial function:

‘mHyJTxTXWLAW‘

unify(rm, m2,%) =

where 7{ = resolve(71,%) and 15 = resolve(72,).

@ First, it resolves the types 71 and 75 with the current solution % into
71 and 74 using the type resolving function resolve.

(2]

3]

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 22/39

Type Unification IPLRG

Using the type resolving and occurrence checking functions, we could
define the type unification as a partial function:

‘mHyJTxTXWLAW‘

unify(rm, m2,%) =

Pla > 73] if 1 = a A —occur(a, 13)
o — 7] if 75 = a A —occur(a, 1)

where 7{ = resolve(71,%) and 15 = resolve(72,).

@ First, it resolves the types 71 and 75 with the current solution % into
71 and 74 using the type resolving function resolve.

@® If one of 7] or 7} is a type variable, it checks recursive types using the
occurrence checking and updates the solution of the type variable.

©

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 23/39

Type Unification IPLRG

Using the type resolving and occurrence checking functions, we could
define the type unification as a partial function:

‘mHyJTxTXWLAW‘

unify(rm, m2,%) =

) if 7{ = num A 75 = num

) if 7 = bool A 75 = bool

unify (71, 72,0, Wify(T1,p, 2., %)) T = (T1p = T10) ATs = (T2p — T2,r)
) if 7] =a =15

Pla > 73] if 1 = a A —occur(a, 13)

o — 7] if 75 = a A —occur(a, 1)

where 7{ = resolve(71,%) and 15 = resolve(72,).

@ First, it resolves the types 71 and 75 with the current solution % into
71 and 74 using the type resolving function resolve.

@® If one of 7] or 7} is a type variable, it checks recursive types using the
occurrence checking and updates the solution of the type variable.

© Otherwise, it checks 71 and 74 are equal or recursively unifies them.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 24 /39

Type Unification IPLRG
unify(m, m2,v%) =

P if 7{ = num A 75 = num

) if 71 = bool A 75 = bool

unify(71,r, T2,r, WLy (71 p, T2,) T = (T1p = T10) ATo = (T2p — T2,r)
P if7] =a =14

Pla s 73] if 1 = a A —occur(a, 75)

Pl 1] if 73 = a A —occur(a, 1)

where 7{ = resolve(7i,%) and 15 = resolve(7,).

And, we can implement the type unification function in Scala as follows:

def unify(lty: Type, rty: Type, sol: Solution): Solution =

(resolve(lty, sol), resolve(rty, sol)) match
case (NumT, NumT) => sol
case (BoolT, BoolT) => sol
case (ArrowT(1lpty, 1lrty), ArrowT(rpty, rrty)) =>

unify(lrty, rrty, unify(lpty, rpty, sol))

case (VarT(k), VarT(1)) if k == 1 => sol
case (VarT(k), rty) if loccurs(k, rty, sol) => sol + (k -> Some(rty))
case (lty, VarT(k)) if l!occurs(k, lty, sol) => sol + (k -> Some(lty))
case _ => error(s"Cannot unify ${lty.str} and ${rty.str}")

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Contents rMPLRG

3. Type Inference with Let-Polymorphism
Type Generalization
Type Instantiation

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 26 /39

Recall: Example 3 — id 7NPLRG

Type Environment
(X [T |
id | [T1]1 { T1 => T1 }

Solution

Let's generalize the type T1 => T1 into a polymorphic type for id with

type variable T1 as a type parameter.
We call this let-polymorphism because it only introduces polymorphism
for the let-binding (e.g., val).

Lecture 26 — Type Inference (2) December 9, 2024 27 /39

COSE212 @ Korea University

Type Environment with Type Schemes IPLRG

We need to extend the type environment with type schemes, restricted
forms of polymorphic types.

Type Environments e T'=Xx v
Type Schemes Via*)r=7" € TV=X; xT
Types T> 7o=num|bool |7 =7«

Note that polymorphic types are not types in TIFAE, and type schemes
are restricted forms of polymorphic types used in type environments.

We can define the type environment and type schemes in Scala:

// type environments

type TypeEnv = Map[String, TypeScheme]

// type schemes

case class TypeScheme(ks: List[Int], ty: Type)

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 28/39

Immutable Variable Defs. with Type Generalization %YPLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match

case Val(x, e, b) =>
val (ety, soll) = typeCheck(e, tenv, sol)
val polyty = gen(ety, tenv, soll)
typeCheck(b, tenv + (x -> polyty), soll)

I'yke:rmv

F7¢0|_61 :717¢1
gen(ThF?wl) = 1V P[x : Tlv],¢1 Fex: T, 19
T, -val x =e1; ex: 2,99

7—Val

We need to generalize the type 71 of the expression e into a type

scheme 7y using the type generalization function gen. For example,

gen(a — a, d, [a — o]) = Va.(a — «a)

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 29/39

Type Generalization ’NPLRG

We can define the type generalization function gen as follows:

gen: (Tx T x) T
gen(r, [,) =V(aa,...,qm).T where free (7,¢) \ freer(I',¥) = {aa, ..., am}

with the following definitions of free type variables in each component:

‘freeT (Tx V) = PXa) ‘

{a} ifTIOé/\w(a):°
— freeT(Tl7w) IfT:a/\qp(a) :T/
free (7,1) = free (7, 1) U free,(r,,v) if 7= (1, — 7»)
o otherwise

| free.v : (1Y x W) = P(Xa)
free v(V(ai,...,am).7,¢) = free (1,¢¥) \ {o1,...,am}

’freer ('x ¥) - P(X ‘

freer([z: : T] ¥) = free_v(17,¥) U...Ufree v (77, 1)

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 30/39

Type Generalization ’NPLRG

We can define the type generalization function gen as follows:

gen: (T x T x W) > T"|
gen(r,I,¢) =V(au,...,am).T where free.(7,¢) \ freer(I',¢) = {a1,...,am}

Why do we need to subtract the free type variables freep(I', %) in the
type environment I" when generalizing the type 77

Consider the following example:

/* TIFAE %/

x => {
// tyenv = [x: T1] and solution = [T1 -> _] (T1 is free in tyenv)
val z = x; // z: T1 (0) not z: [T1] { T1 } X)
z // z: T1 (0) not z: T2 X)

}

If we generalize the type T1 to [T1] { T1 => T1 } for z, the types of x
and z will be different even though they have exactly the same value.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 31/39

Recall: Example 3 — id

NPL

Type Environment

RG

X |T

|

id

[T1] { T1 = T1 |

Solution

Let's define a new type variable T2 to instantiate the type variable T1.

And, substitute T1 with T2.

COSE212 @ Korea University Lecture 26 — Type Inference (2)

December 9, 2024

32/39

Recall: Example 3 — id 7NPLRG

Type Environment

(X |T |
id | [T1] { T1 => T1 }
n T2
Solution
[Xa | T
T1L | -
T2 | Number
T3 | -

Let's define a new type variable T3 to instantiate the type variable T1.
And, substitute T1 with T3.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 33/39

|dentifier Lookup with Type Instantiation 7NPLRG

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match

case Id(x) =>
val ty = tenv.getOrElse(x, error(s'free identifier: $x"))

inst(ty, sol)
ybke:rm v

L(@@)=71" dmst(r",9) = (1,¢)
LyFx:T,

We need to instantiate the type scheme 7" with new type variables using
the type instantiation function inst. For example,

inst(Vo.(a = a),@) = (8 — 5,[8 +— e])

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 34/39

Type Instantiation ’NPLRG

We can define the type instantiation function inst as follows:

inst : (TY x ¥) — (T x ¥)

inst(V(ai, ..., 0m). 7, ¢) = (
subst(7T, ¥[ar = al, ..o, am = o)),
Plah — e, ... al, e

)
where al,. .0 FYAVI<i<j<m. o #

with the following type substitution function subst:

‘subst:(']I‘X\I/)%’]T‘

subst(7’, 1)) ifr=aAy(a) =1
subst(7,v¢) = { subst(7p,¥) — subst(rr,¢) ifT=(1p — 7)
T otherwise

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Summary ’VPLRG

1. Type Checker and Typing Rules with Type Inference
Solutions for Type Constraints
Numbers
Additions
Conditionals
Immutable Variable Definitions and Identifier Lookup
Function Definitions
Recursive Function Definitions
Function Applications

2. Type Unification
Type Resolving
Occurrence Checking
Type Unification

3. Type Inference with Let-Polymorphism
Type Generalization
Type Instantiation

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Exercise #16 7NPLRG

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/tifae

® Please see above document on GitHub:

® |Implement typeCheck function.
® Implement interp function.

® |t is just an exercise, and you don’t need to submit anything.

® However, some exam questions might be related to this exercise.

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/tifae

Final Exam ’VNPLRG

Date: 18:30 — 21:00 (150 min.), December 18 (Wed.).
® Location: 205, Woojung Hall of Informatics (& &L)

Coverage: Lectures 14 — 26
Format: closed book and closed notes

Fill-in-the-blank questions about the PL concepts.

Write the evaluation results of given expressions.

Draw derivation trees of given expressions.

Define the syntax or semantics of extended language features.
Define typing rules for the given language features.

etc.

Note that there is no class on December 16 (Mon.).

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024

Next Lecture ’VNPLRG

® Course Review

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 26 — Type Inference (2) December 9, 2024 39/39

https://plrg.korea.ac.kr

	Type Checker and Typing Rules with Type Inference
	Solutions for Type Constraints
	Numbers
	Additions
	Conditionals
	Immutable Variable Definitions and Identifier Lookup
	Function Definitions
	Recursive Function Definitions
	Function Applications

	Type Unification
	Type Resolving
	Occurrence Checking
	Type Unification

	Type Inference with Let-Polymorphism
	Type Generalization
	Type Instantiation

