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Recall
• Type inference is the process of automatically inferring the types of

expressions.

• We have seen three examples to learn how the type inference works.

/* RFAE */ def sum(x) = if (x < 1) 0 else x + sum(x - 1); sum

/* FAE */ val app = n => f => f(n); app(42)(x => x)

/* FAE */ val id = x => x; val n = id(42); val b = id(true); b

• In this lecture, let’s learn the details of the type inference algorithm.

• TIFAE – TRFAE with type inference.
• Type Checker and Typing Rules with Type Inference
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 2 / 39



Recall
• Type inference is the process of automatically inferring the types of

expressions.

• We have seen three examples to learn how the type inference works.

/* RFAE */ def sum(x) = if (x < 1) 0 else x + sum(x - 1); sum

/* FAE */ val app = n => f => f(n); app(42)(x => x)

/* FAE */ val id = x => x; val n = id(42); val b = id(true); b

• In this lecture, let’s learn the details of the type inference algorithm.

• TIFAE – TRFAE with type inference.
• Type Checker and Typing Rules with Type Inference
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 2 / 39



Recall
• Type inference is the process of automatically inferring the types of

expressions.

• We have seen three examples to learn how the type inference works.

/* RFAE */ def sum(x) = if (x < 1) 0 else x + sum(x - 1); sum

/* FAE */ val app = n => f => f(n); app(42)(x => x)

/* FAE */ val id = x => x; val n = id(42); val b = id(true); b

• In this lecture, let’s learn the details of the type inference algorithm.

• TIFAE – TRFAE with type inference.
• Type Checker and Typing Rules with Type Inference
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 2 / 39



Recall
• Type inference is the process of automatically inferring the types of

expressions.

• We have seen three examples to learn how the type inference works.

/* RFAE */ def sum(x) = if (x < 1) 0 else x + sum(x - 1); sum

/* FAE */ val app = n => f => f(n); app(42)(x => x)

/* FAE */ val id = x => x; val n = id(42); val b = id(true); b

• In this lecture, let’s learn the details of the type inference algorithm.

• TIFAE – TRFAE with type inference.
• Type Checker and Typing Rules with Type Inference
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 2 / 39



Contents
1. Type Checker and Typing Rules with Type Inference

Solutions for Type Constraints
Numbers
Additions
Conditionals
Immutable Variable Definitions and Identifier Lookup
Function Definitions
Recursive Function Definitions
Function Applications

2. Type Unification
Type Resolving
Occurrence Checking
Type Unification

3. Type Inference with Let-Polymorphism
Type Generalization
Type Instantiation

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 3 / 39



Contents
1. Type Checker and Typing Rules with Type Inference

Solutions for Type Constraints
Numbers
Additions
Conditionals
Immutable Variable Definitions and Identifier Lookup
Function Definitions
Recursive Function Definitions
Function Applications

2. Type Unification
Type Resolving
Occurrence Checking
Type Unification

3. Type Inference with Let-Polymorphism
Type Generalization
Type Instantiation

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 4 / 39



Type Checker and Typing Rules
Let’s 1 design typing rules of TIFAE to define when an expression is
well-typed in the form of:

Γ ⊢ e : τ

and 2 implement a type checker in Scala according to typing rules:

def typeCheck(expr: Expr, tenv: TypeEnv): Type = ???

The type checker returns the type of e if it is well-typed, or rejects it and
throws a type error otherwise.

We will keep track of the variable types using a type environment Γ as
a mapping from variable names to their types.

Type Environments Γ ∈
L = X fin−→ T (TypeEnv)

type TypeEnv = Map[String, Type]
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Recall: Example 1 – sum
In addition, we need to keep track of the solution for type constraints
over type variables to infer the types of expressions.

/* RFAE */ def sum(x) = if (x < 1) 0 else x + sum(x - 1); sum

def

sum(x) if

<

x 1

0 +

x @

sum -

x 1

sum

Number

Boolean

T1 Number

Number Number

T1 T2

T1 => T2 Number

T1 Number

T1 => T2

Type Environment
X T
x T1
sum T1 => T2

Solution
Xα T
T1 Number
T2 Number
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Solutions for Type Constraints
A solution is a mapping from type variables to types or •.

Types T ∋ τ ::= num | bool | τ → τ | α (Type)

Solutions ψ ∈ Ψ = Xα
fin−→ (T ⊎ {•}) (Solution)

Type Variables α ∈ Xα (Int)

type Solution = Map[Int, Option[Type]]

Note that • (None) represents a not yet solved (free) type variable.

Now, we have new forms of type checker and typing rules.

def typeCheck(expr: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = ???

Γ, ψ ⊢ e : τ, ψ

Similar to the memory passing in MFAE for mutation, we will pass the
solution ψ and update it during type checking.
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Numbers

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...
case Num(n) => (NumT, sol)

Γ, ψ ⊢ e : τ, ψ

τ−Num
Γ, ψ ⊢ n : num, ψ
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Additions

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...
case Add(l, r) =>

val (lty, sol1) = typeCheck(l, tenv, sol)
val (rty, sol2) = typeCheck(r, tenv, sol1)
val sol3 = unify(lty, NumT, sol2)
val sol4 = unify(rty, NumT, sol3)
(NumT, sol4)

Γ, ψ ⊢ e : τ, ψ

τ−Add

Γ, ψ0 ⊢ e1 : τ1, ψ1 Γ, ψ1 ⊢ e2 : τ2, ψ2
unify(τ1, num, ψ2) = ψ3 unify(τ2, num, ψ3) = ψ4

Γ, ψ0 ⊢ e1 + e2 : num, ψ4

The unify function that takes two types must be the same and updates
the given solution. We will see how it works later.
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Conditionals

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...
case If(c, t, e) =>

val (cty, sol1) = typeCheck(c, tenv, sol)
val (tty, sol2) = typeCheck(t, tenv, sol1)
val (ety, sol3) = typeCheck(e, tenv, sol2)
val sol4 = unify(cty, BoolT, sol3)
val sol5 = unify(tty, ety, sol4)
(tty, sol5)

Γ, ψ ⊢ e : τ, ψ

τ−If

Γ, ψ ⊢ ec : τc, ψc Γ, ψc ⊢ et : τt, ψt Γ, ψt ⊢ ee : τe, ψe

unify(τc, bool, ψe) = ψ′ unify(τt, τe, ψ
′) = ψ′′

Γ, ψ ⊢ if (ec) et else ee : τt, ψ
′′
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Immutable Variable Defs. and Identifier Lookup

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...

case Val(x, e, b) =>
val (ety, sol1) = typeCheck(e, tenv, sol)
typeCheck(b, tenv + (x -> ety), sol1)

case Id(x) =>
val ty = tenv.getOrElse(x, error(s"free identifier: $x"))
(ty, sol)

Γ, ψ ⊢ e : τ, ψ

τ−Val
Γ, ψ0 ⊢ e1 : τ1, ψ1 Γ[x : τ1], ψ1 ⊢ e2 : τ2, ψ2

Γ, ψ0 ⊢ val x = e1; e2 : τ2, ψ2

τ−Id
x ∈ Domain(Γ)

Γ, ψ ⊢ x : Γ(x), ψ
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Function Definitions

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...
case Fun(p, b) =>

val (pty, sol1) = newTypeVar(sol)
val (rty, sol2) = typeCheck(b, tenv + (p -> pty), sol1)
(ArrowT(pty, rty), sol2)

Γ, ψ ⊢ e : τ, ψ

τ−Fun
αp /∈ ψ Γ[x : αp], ψ[αp 7→ •] ⊢ e : τ, ψ′

Γ, ψ ⊢ λx.e : αp → τ, ψ′

We need to introduce a new type variable αp for the parameter x.
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Recursive Function Definitions

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...
case Rec(f, p, b, s) =>

val (pty, sol1) = newTypeVar(sol)
val (rty, sol2) = newTypeVar(sol1)
val fty = ArrowT(pty, rty)
val tenv1 = tenv + (f -> fty)
val tenv2 = tenv1 + (p -> pty)
val (bty, sol3) = typeCheck(b, tenv2, sol2)
val sol4 = unify(bty, rty, sol3)
typeCheck(s, tenv1, sol4)

Γ, ψ ⊢ e : τ, ψ

τ−Rec

αp, αr /∈ ψ αp ̸= αr Γ1 = Γ[xf : (αp → αr)]
Γ2 = Γ1[xp : αp] Γ2, ψ[αp 7→ •, αr 7→ •] ⊢ eb : τb, ψb

unify(τb, αr, ψb) = ψr Γ1, ψr ⊢ es : τs, ψs

Γ, ψ ⊢ def xf (xp) = eb; es : τs, ψs
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Function Applications

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...
case App(f, a) =>

val (fty, sol1) = typeCheck(f, tenv, sol)
val (aty, sol2) = typeCheck(a, tenv, sol1)
val (rty, sol3) = newTypeVar(sol2)
val sol4 = unify(ArrowT(aty, rty), fty, sol3)
(rty, sol4)

Γ, ψ ⊢ e : τ, ψ

τ−App

Γ, ψ ⊢ ef : τf , ψf Γ, ψf ⊢ ea : τa, ψa

αr /∈ ψa unify(τa → αr, τf , ψa[αr 7→ •]) = ψ′

Γ, ψ ⊢ ef (ea) : αr, ψ
′
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Type Unification

Definition (Type Unification)
Type unification is the process of updating a solution to make two types
equal. If the types are not unifiable, then this process fails and throws an
exception.

unify : (T × T × Ψ) ⇀ Ψ

For example, if we unify a type variable α and the number type num, the
solution [α 7→ •] is updated to [α 7→ num].

unify(α, num,∅) = [α 7→ num]

Before, we define the type unification, we need to define the type
resolving and occurrence checking functions.

1 Type resolving is the process of recursively resolving a type variable
to its representative type to deal with the type aliasing.

2 Occurrence checking is the process of checking whether a type
variable occurs in a type to detect recursive types.
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Type Resolving
To understand why we need the type resolving function, let’s consider the
following example:

unify(α1, num, ψ1) = ψ2

ψ1 =

Solution
Xα T
α1 α2
α2 α3
α3 •

ψ2 =

Solution
Xα T
α1 num
α2 α3
α3 •

If we update α1 to num in the solution ψ2, it misses the information that
α2 and α3 are also num.
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Type Resolving
To understand why we need the type resolving function, let’s consider the
following example:
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ψ1 =

Solution
Xα T
α1 α2
α2 α3
α3 •

ψ2 =

Solution
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If we directly update α1 to num in the solution ψ2, it misses the
information that α2 and α3 are also num.

Instead, we need to resolve the type variable α1 to find its representative
type (i.e., α3) and unify it with num to deal with the type aliasing.
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Type Resolving
We can define the type resolving function as follows:

resolve : (T × Ψ) → T

resolve(τ, ψ) =
{

resolve(τ ′, ψ) if τ = α ∧ ψ(α) = τ ′

τ otherwise

and implement it in Scala as follows:

def resolve(ty: Type, sol: Solution): Type = ty match
case VarT(k) => sol(k) match

case Some(ty) => resolve(ty, sol)
case None => ty

case _ => ty
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Occurrence Checking
Let’s understand why we need the occurrence checking function:

unify(α1, num → α1, ψ) = ψ′

Can we unify α1 and num → α1?

No! because it requires recursive types
not supported in our type system.

Let’s define the occurrence checking function to detect type constraints
that require recursive types

occur : (Xα × T × Ψ) → bool

occur(α, τ, ψ) =

 true if τ = α
occur(α, τp, ψ) ∨ occur(α, τr, ψ) if τ = (τp → τr)
false otherwise

and implement it in Scala as follows:

def occurs(k: Int, ty: Type, sol: Solution): Boolean = resolve(ty, sol) match
case VarT(l) => k == l
case ArrowT(pty, rty) => occurs(k, pty, sol) || occurs(k, rty, sol)
case _ => false

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 20 / 39



Occurrence Checking
Let’s understand why we need the occurrence checking function:

unify(α1, num → α1, ψ) = ψ′

Can we unify α1 and num → α1? No! because it requires recursive types
not supported in our type system.

Let’s define the occurrence checking function to detect type constraints
that require recursive types

occur : (Xα × T × Ψ) → bool

occur(α, τ, ψ) =

 true if τ = α
occur(α, τp, ψ) ∨ occur(α, τr, ψ) if τ = (τp → τr)
false otherwise

and implement it in Scala as follows:

def occurs(k: Int, ty: Type, sol: Solution): Boolean = resolve(ty, sol) match
case VarT(l) => k == l
case ArrowT(pty, rty) => occurs(k, pty, sol) || occurs(k, rty, sol)
case _ => false

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 20 / 39



Occurrence Checking
Let’s understand why we need the occurrence checking function:

unify(α1, num → α1, ψ) = ψ′

Can we unify α1 and num → α1? No! because it requires recursive types
not supported in our type system.

Let’s define the occurrence checking function to detect type constraints
that require recursive types

occur : (Xα × T × Ψ) → bool

occur(α, τ, ψ) =

 true if τ = α
occur(α, τp, ψ) ∨ occur(α, τr, ψ) if τ = (τp → τr)
false otherwise

and implement it in Scala as follows:

def occurs(k: Int, ty: Type, sol: Solution): Boolean = resolve(ty, sol) match
case VarT(l) => k == l
case ArrowT(pty, rty) => occurs(k, pty, sol) || occurs(k, rty, sol)
case _ => false

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 20 / 39



Occurrence Checking
Let’s understand why we need the occurrence checking function:

unify(α1, num → α1, ψ) = ψ′

Can we unify α1 and num → α1? No! because it requires recursive types
not supported in our type system.

Let’s define the occurrence checking function to detect type constraints
that require recursive types

occur : (Xα × T × Ψ) → bool

occur(α, τ, ψ) =

 true if τ = α
occur(α, τp, ψ) ∨ occur(α, τr, ψ) if τ = (τp → τr)
false otherwise

and implement it in Scala as follows:

def occurs(k: Int, ty: Type, sol: Solution): Boolean = resolve(ty, sol) match
case VarT(l) => k == l
case ArrowT(pty, rty) => occurs(k, pty, sol) || occurs(k, rty, sol)
case _ => false

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 20 / 39



Type Unification
Using the type resolving and occurrence checking functions, we could
define the type unification as a partial function:

unify : (T × T × Ψ) ⇀ Ψ

unify(τ1, τ2, ψ) =
.

1
.

2
.

3
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Type Unification
Using the type resolving and occurrence checking functions, we could
define the type unification as a partial function:

unify : (T × T × Ψ) ⇀ Ψ

unify(τ1, τ2, ψ) =
where τ ′

1 = resolve(τ1, ψ) and τ ′
2 = resolve(τ2, ψ).

1 First, it resolves the types τ1 and τ2 with the current solution ψ into
τ ′

1 and τ ′
2 using the type resolving function resolve.

2
.

3
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Type Unification
Using the type resolving and occurrence checking functions, we could
define the type unification as a partial function:

unify : (T × T × Ψ) ⇀ Ψ

unify(τ1, τ2, ψ) = ψ[α 7→ τ ′
2] if τ ′

1 = α ∧ ¬occur(α, τ ′
2)

ψ[α 7→ τ ′
1] if τ ′

2 = α ∧ ¬occur(α, τ ′
1)

where τ ′
1 = resolve(τ1, ψ) and τ ′

2 = resolve(τ2, ψ).

1 First, it resolves the types τ1 and τ2 with the current solution ψ into
τ ′

1 and τ ′
2 using the type resolving function resolve.

2 If one of τ ′
1 or τ ′

2 is a type variable, it checks recursive types using the
occurrence checking and updates the solution of the type variable.

3
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Type Unification
Using the type resolving and occurrence checking functions, we could
define the type unification as a partial function:

unify : (T × T × Ψ) ⇀ Ψ

unify(τ1, τ2, ψ) =

ψ if τ ′
1 = num ∧ τ ′

2 = num
ψ if τ ′

1 = bool ∧ τ ′
2 = bool

unify(τ1,r, τ2,r, unify(τ1,p, τ2,p, ψ)) if τ ′
1 = (τ1,p → τ1,r) ∧ τ ′

2 = (τ2,p → τ2,r)
ψ if τ ′

1 = α = τ ′
2

ψ[α 7→ τ ′
2] if τ ′

1 = α ∧ ¬occur(α, τ ′
2)

ψ[α 7→ τ ′
1] if τ ′

2 = α ∧ ¬occur(α, τ ′
1)

where τ ′
1 = resolve(τ1, ψ) and τ ′

2 = resolve(τ2, ψ).

1 First, it resolves the types τ1 and τ2 with the current solution ψ into
τ ′

1 and τ ′
2 using the type resolving function resolve.

2 If one of τ ′
1 or τ ′

2 is a type variable, it checks recursive types using the
occurrence checking and updates the solution of the type variable.

3 Otherwise, it checks τ ′
1 and τ ′

2 are equal or recursively unifies them.
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Type Unification
unify(τ1, τ2, ψ) =

ψ if τ ′
1 = num ∧ τ ′

2 = num
ψ if τ ′

1 = bool ∧ τ ′
2 = bool

unify(τ1,r, τ2,r, unify(τ1,p, τ2,p, ψ)) if τ ′
1 = (τ1,p → τ1,r) ∧ τ ′

2 = (τ2,p → τ2,r)
ψ if τ ′

1 = α = τ ′
2

ψ[α 7→ τ ′
2] if τ ′

1 = α ∧ ¬occur(α, τ ′
2)

ψ[α 7→ τ ′
1] if τ ′

2 = α ∧ ¬occur(α, τ ′
1)

where τ ′
1 = resolve(τ1, ψ) and τ ′

2 = resolve(τ2, ψ).

And, we can implement the type unification function in Scala as follows:

def unify(lty: Type, rty: Type, sol: Solution): Solution =
(resolve(lty, sol), resolve(rty, sol)) match

case (NumT, NumT) => sol
case (BoolT, BoolT) => sol
case (ArrowT(lpty, lrty), ArrowT(rpty, rrty)) =>

unify(lrty, rrty, unify(lpty, rpty, sol))
case (VarT(k), VarT(l)) if k == l => sol
case (VarT(k), rty) if !occurs(k, rty, sol) => sol + (k -> Some(rty))
case (lty, VarT(k)) if !occurs(k, lty, sol) => sol + (k -> Some(lty))
case _ => error(s"Cannot unify ${lty.str} and ${rty.str}")

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 25 / 39



Contents
1. Type Checker and Typing Rules with Type Inference

Solutions for Type Constraints
Numbers
Additions
Conditionals
Immutable Variable Definitions and Identifier Lookup
Function Definitions
Recursive Function Definitions
Function Applications

2. Type Unification
Type Resolving
Occurrence Checking
Type Unification

3. Type Inference with Let-Polymorphism
Type Generalization
Type Instantiation

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 26 / 39



Recall: Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -

Let’s generalize the type T1 => T1 into a polymorphic type for id with
type variable T1 as a type parameter.
We call this let-polymorphism because it only introduces polymorphism
for the let-binding (e.g., val).
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Type Environment with Type Schemes
We need to extend the type environment with type schemes, restricted
forms of polymorphic types.

Type Environments Γ ∈
L = X fin−→ T∀

Type Schemes ∀(α∗).τ = τ∀ ∈ T∀ = X∗
α × T

Types T ∋ τ ::= num | bool | τ → τ | α

Note that polymorphic types are not types in TIFAE, and type schemes
are restricted forms of polymorphic types used in type environments.

We can define the type environment and type schemes in Scala:

// type environments
type TypeEnv = Map[String, TypeScheme]
// type schemes
case class TypeScheme(ks: List[Int], ty: Type)
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Immutable Variable Defs. with Type Generalization

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...

case Val(x, e, b) =>
val (ety, sol1) = typeCheck(e, tenv, sol)
val polyty = gen(ety, tenv, sol1)
typeCheck(b, tenv + (x -> polyty), sol1)

Γ, ψ ⊢ e : τ, ψ

τ−Val

Γ, ψ0 ⊢ e1 : τ1, ψ1
gen(τ1,Γ, ψ1) = τ∀

1 Γ[x : τ∀
1 ], ψ1 ⊢ e2 : τ2, ψ2

Γ, ψ0 ⊢ val x = e1; e2 : τ2, ψ2

We need to generalize the type τ1 of the expression e1 into a type
scheme τ∀

1 using the type generalization function gen.

For example,

gen(α → α,∅, [α 7→ •]) = ∀α.(α → α)
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Type Generalization
We can define the type generalization function gen as follows:

gen : (T ×
L

× Ψ) → T∀

gen(τ,Γ, ψ) = ∀(α1, . . . , αm).τ where freeτ (τ, ψ) \ freeΓ(Γ, ψ) = {α1, . . . , αm}

with the following definitions of free type variables in each component:

freeτ : (T × Ψ) → P(Xα)

freeτ (τ, ψ) =


{α} if τ = α ∧ ψ(α) = •
freeτ (τ ′, ψ) if τ = α ∧ ψ(α) = τ ′

freeτ (τp, ψ) ∪ freeτ (τr, ψ) if τ = (τp → τr)
∅ otherwise

freeτ∀ : (T∀ × Ψ) → P(Xα)

freeτ∀ (∀(α1, . . . , αm).τ, ψ) = freeτ (τ, ψ) \ {α1, . . . , αm}

freeΓ : (L × Ψ) → P(Xα)

freeΓ([x1 : τ∀
1 , . . . , xn : τ∀

n ], ψ) = freeτ∀ (τ∀
1 , ψ) ∪ . . . ∪ freeτ∀ (τ∀

n , ψ)
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Type Generalization
We can define the type generalization function gen as follows:

gen : (T ×
L

× Ψ) → T∀

gen(τ,Γ, ψ) = ∀(α1, . . . , αm).τ where freeτ (τ, ψ) \ freeΓ(Γ, ψ) = {α1, . . . , αm}

Why do we need to subtract the free type variables freeΓ(Γ, ψ) in the
type environment Γ when generalizing the type τ?

Consider the following example:

/* TIFAE */
x => {

// tyenv = [x: T1] and solution = [T1 -> _] (T1 is free in tyenv)
val z = x; // z: T1 (O) not z: [T1] { T1 } (X)
z // z: T1 (O) not z: T2 (X)

}

If we generalize the type T1 to [T1] { T1 => T1 } for z, the types of x
and z will be different even though they have exactly the same value.
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Recall: Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1

T2 => T2

Type Environment
X T
id [T1] { T1 => T1 }

Solution
Xα T
T1 -
T2 -

Let’s define a new type variable T2 to instantiate the type variable T1.
And, substitute T1 with T2.
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Recall: Example 3 – id

val

λ

x x

id val

@

id 42

n val

@

id true

b b

T1 => T1

T1 T1 T2

T2 => T2 Number

T3 => T3

Type Environment
X T
id [T1] { T1 => T1 }
n T2

Solution
Xα T
T1 -
T2 Number
T3 -

Let’s define a new type variable T3 to instantiate the type variable T1.
And, substitute T1 with T3.
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Identifier Lookup with Type Instantiation

def typeCheck(e: Expr, tenv: TypeEnv, sol: Solution): (Type, Solution) = e match
...

case Id(x) =>
val ty = tenv.getOrElse(x, error(s"free identifier: $x"))
inst(ty, sol)

Γ, ψ ⊢ e : τ, ψ

τ−Id
Γ(x) = τ∀ inst(τ∀, ψ) = (τ, ψ′)

Γ, ψ ⊢ x : τ, ψ′

We need to instantiate the type scheme τ∀ with new type variables using
the type instantiation function inst.

For example,

inst(∀α.(α → α),∅) = (β → β, [β 7→ •])
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Type Instantiation
We can define the type instantiation function inst as follows:

inst : (T∀ × Ψ) → (T × Ψ)

inst(∀(α1, . . . , αm).τ, ψ) = (
subst(τ, ψ[α1 7→ α′

1, . . . , αm 7→ α′
m]),

ψ[α′
1 7→ •, . . . , α′

m 7→ •]
)

where α′
1, . . . , α

′
m /∈ ψ ∧ ∀1 ≤ i < j ≤ m. α′

i ̸= α′
j

with the following type substitution function subst:

subst : (T × Ψ) → T

subst(τ, ψ) =

{
subst(τ ′, ψ) if τ = α ∧ ψ(α) = τ ′

subst(τp, ψ) → subst(τr, ψ) if τ = (τp → τr)
τ otherwise

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 35 / 39



Type Instantiation
We can define the type instantiation function inst as follows:

inst : (T∀ × Ψ) → (T × Ψ)

inst(∀(α1, . . . , αm).τ, ψ) = (
subst(τ, ψ[α1 7→ α′

1, . . . , αm 7→ α′
m]),

ψ[α′
1 7→ •, . . . , α′

m 7→ •]
)

where α′
1, . . . , α

′
m /∈ ψ ∧ ∀1 ≤ i < j ≤ m. α′

i ̸= α′
j

with the following type substitution function subst:

subst : (T × Ψ) → T

subst(τ, ψ) =

{
subst(τ ′, ψ) if τ = α ∧ ψ(α) = τ ′

subst(τp, ψ) → subst(τr, ψ) if τ = (τp → τr)
τ otherwise

COSE212 @ Korea University Lecture 26 – Type Inference (2) December 9, 2024 35 / 39



Summary
1. Type Checker and Typing Rules with Type Inference

Solutions for Type Constraints
Numbers
Additions
Conditionals
Immutable Variable Definitions and Identifier Lookup
Function Definitions
Recursive Function Definitions
Function Applications

2. Type Unification
Type Resolving
Occurrence Checking
Type Unification

3. Type Inference with Let-Polymorphism
Type Generalization
Type Instantiation
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Exercise #16

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/tifae

• Please see above document on GitHub:
• Implement typeCheck function.
• Implement interp function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.
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Final Exam
• Date: 18:30 – 21:00 (150 min.), December 18 (Wed.).
• Location: 205, Woojung Hall of Informatics (우정정보관)
• Coverage: Lectures 14 – 26
• Format: closed book and closed notes

• Fill-in-the-blank questions about the PL concepts.
• Write the evaluation results of given expressions.
• Draw derivation trees of given expressions.
• Define the syntax or semantics of extended language features.
• Define typing rules for the given language features.
• etc.

• Note that there is no class on December 16 (Mon.).
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Next Lecture
• Course Review

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr
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