
Lecture 27 – Course Review
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 1 / 31

Goal of This Course

Learn Essential Concepts of Programming Languages

• Why?
• To learn new programming languages quickly.
• To evaluate and pick the best language for a given task.
• To design your own specialized languages for specific tasks.

• How?

By Designing Diverse Programming Languages

• By designing programming languages in a mathematical way.
• By implementing their interpreters using Scala.

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 2 / 31

Goal of This Course

Learn Essential Concepts of Programming Languages

• Why?
• To learn new programming languages quickly.
• To evaluate and pick the best language for a given task.
• To design your own specialized languages for specific tasks.

• How?

By Designing Diverse Programming Languages

• By designing programming languages in a mathematical way.
• By implementing their interpreters using Scala.

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 2 / 31

Goal of This Course

Learn Essential Concepts of Programming Languages

• Why?

• To learn new programming languages quickly.
• To evaluate and pick the best language for a given task.
• To design your own specialized languages for specific tasks.

• How?

By Designing Diverse Programming Languages

• By designing programming languages in a mathematical way.
• By implementing their interpreters using Scala.

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 2 / 31

Goal of This Course

Learn Essential Concepts of Programming Languages

• Why?
• To learn new programming languages quickly.
• To evaluate and pick the best language for a given task.
• To design your own specialized languages for specific tasks.

• How?

By Designing Diverse Programming Languages

• By designing programming languages in a mathematical way.
• By implementing their interpreters using Scala.

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 2 / 31

Goal of This Course

Learn Essential Concepts of Programming Languages

• Why?
• To learn new programming languages quickly.
• To evaluate and pick the best language for a given task.
• To design your own specialized languages for specific tasks.

• How?

By Designing Diverse Programming Languages

• By designing programming languages in a mathematical way.
• By implementing their interpreters using Scala.

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 2 / 31

Goal of This Course

Learn Essential Concepts of Programming Languages

• Why?
• To learn new programming languages quickly.
• To evaluate and pick the best language for a given task.
• To design your own specialized languages for specific tasks.

• How?

By Designing Diverse Programming Languages

• By designing programming languages in a mathematical way.
• By implementing their interpreters using Scala.

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 2 / 31

Summary

(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 3 / 31

Summary

(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 4 & 5)
VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 4 / 31

Summary

(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 5 / 31

Summary

(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 6 / 31

Summary

(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 7 / 31

Summary

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 8 / 31

Summary

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 9 / 31

Summary

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 10 / 31

Summary

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 11 / 31

Summary

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 12 / 31

Summary

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 13 / 31

Summary

(Lecture 16)
KFAE

First-Class
Continuation

(Lecture 8)

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 14 / 31

Summary

(Lecture 16)
KFAE

First-Class
Continuation

(Lecture 8)

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

Compiling with
Continuation

(Lecture 17)

First-Class
Continuation

Continuation

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 15 / 31

Summary

(Lecture 16)
KFAE

First-Class
Continuation

(Lecture 8)

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 18 & 19)
TFAEFAE

Compiling with
Continuation

(Lecture 17)

First-Class
Continuation

Continuation

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 16 / 31

Summary

(Lecture 16)
KFAE

First-Class
Continuation

(Lecture 8)

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 20)
TRFAERFAE

(Lecture 18 & 19)
TFAEFAE

Compiling with
Continuation

(Lecture 17)

First-Class
Continuation

Continuation

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 17 / 31

Summary

(Lecture 16)
KFAE

First-Class
Continuation

(Lecture 8)

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 21 & 22)
ATFAE

Algebraic
Data Types

TRFAE
(Lecture 20)
TRFAERFAE

(Lecture 18 & 19)
TFAEFAE

Compiling with
Continuation

(Lecture 17)

First-Class
Continuation

Continuation

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 18 / 31

Summary

(Lecture 16)
KFAE

First-Class
Continuation

(Lecture 8)

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 23)
PTFAE

Parametric
Polymorphism

TFAE

(Lecture 21 & 22)
ATFAE

Algebraic
Data Types

TRFAE
(Lecture 20)
TRFAERFAE

(Lecture 18 & 19)
TFAEFAE

Compiling with
Continuation

(Lecture 17)

First-Class
Continuation

Continuation

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 19 / 31

Summary

(Lecture 16)
KFAE

First-Class
Continuation

(Lecture 8)

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 23)
PTFAE

Parametric
Polymorphism

TFAE

(Lecture 24)
STFAE

Subtype
Polymorphism

TFAE

(Lecture 21 & 22)
ATFAE

Algebraic
Data Types

TRFAE
(Lecture 20)
TRFAERFAE

(Lecture 18 & 19)
TFAEFAE

Compiling with
Continuation

(Lecture 17)

First-Class
Continuation

Continuation

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 20 / 31

Summary

(Lecture 16)
KFAE

First-Class
Continuation

(Lecture 8)

(Lecture 14 & 15)
FAE-cps

Continuation

(Lecture 8)

(Lecture 9)
RFAE

Recursion &
Conditionals

(Lecture 8)(Lecture 2 & 3)
AE

Arithmetic
Expressions

(Part 1)
Untyped Languages

(Part 2)
Typed Languages

(Lecture 25 & 26)
TIFAE

Type
Inference

(Lecture 20)

(Lecture 23)
PTFAE

Parametric
Polymorphism

TFAE

(Lecture 24)
STFAE

Subtype
Polymorphism

TFAE

(Lecture 21 & 22)
ATFAE

Algebraic
Data Types

TRFAE
(Lecture 20)
TRFAERFAE

(Lecture 18 & 19)
TFAEFAE

Compiling with
Continuation

(Lecture 17)

First-Class
Continuation

Continuation

FAE

(Lecture 13)
LFAE

Lazy
Evaluation

FAE

(Lecture 12)

Garbage
Collection

(Lecture 10)

Mutable
Variable

(Lecture 11)
MFAE

Mutable
Variable

FAE

(Lecture 10)
BFAE

Mutable
Boxes

FAE
(Lecture 8)

Frist-Class Func.
+ Desugaring FAEAE

(Lecture 7)
FVAE

First-Class
Functions

Identifiers

(Lecture 6)
F1VAE

First-Order
Functions

Identifiers
(Lecture 4 & 5)

VAE

Identifiers

(Lecture 2 & 3)

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 21 / 31

Applications of PL Foundations
A deeper and broader understanding of programming languages can help
you in:

• Software Engineering
• Software Testing
• Software Verification
• Software Analysis
• Software Security
• . . .

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 22 / 31

Application 1 – Software Analysis
We can develop a static analyzer for diverse purposes (e.g., optimization,
understanding, bug detection, etc.) using the PL foundations.1ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

1 let x = /* 1 or 2 */;

2 let y = /* any str */;

3 let o = new Observable(subscriber => {

4 subscriber.next (1);

5 subscriber.next (2);

6 subscriber.next (3);

7 });

8 o.subscribe(k => x *= k); // x: 6 or 12

9 o.subscribe(k => y += k); // y: any str + "123"

Figure 13: An example of the Observable built-in library

variable n points to the interval [0, 99] on line 3. Then, the abstract
value is updated to [1, 100] and [2, 200] by analyzing |> add(1)

on line 4 and |> double on line 5, respectively. Therefore, the de-
rived analyzer successfully analyzes that the variable a stores the
interval [2, 200]. The derived analyzer also correctly analyzes the
execution order of the pipeline operator on lines 6–7. The pipeline
operator first executes the argument part rather than the function
part. Thus, the original program throws a TypeError exception on
line 6 because the addition of the BigInt value 1n with another nu-
meric value is ill-typed. The derived analyzer successfully analyzes
that the program terminates on line 6 with a TypeError exception by
correctly considering the execution order of the pipeline operator.

6.4.2 Observable Library. JSAVER can support not only a new syn-
tactic feature but also a new built-in library. Using the Observable

library, we can model push-based data sources, such as DOM events,
timer intervals, and sockets. Consider an example program in Fig-
ure 13. On lines 1–2, the program first randomly defines variables
x with 1 or 2 and y with a random string. Then, it registers an ar-
row function subscriber => { ... } to a new Observable object
and assigns it to the variable o on lines 3–7. On line 8, it subscribes
k => x *= k via subscribe to invoke the registered arrow function.
Then, the arrow function k => x *= k is synchronously invoked
three times with multiple values 1, 2, and 3. Therefore, the variable
x points to 6 or 12 because the initial value of x is 1 or 2, and it
is multiplied by 1, 2, and 3. Similarly, the variable y points to any
string ending with "123" because its initial value is a random string,
and it is updated by concatenating string values of 1, 2, and 3, on
line 9.

To analyze the example program, we applied the proposal of the
Observable library to ES12 and derived a JavaScript static analyzer
from it. We used the interval domain for integers and the Prefix-
Suffix (PS) domain explained in Section 6.3 for strings. On lines 1–2,
the derived analyzer first assigns [1, 2] and ⟨"", ""⟩ to the variables
x and y, respectively. Then, it assigns the new abstract Observable
object with the arrow function subscriber => { ... } to o by ana-
lyzing the invocation of the constructor of Observable on lines 3–7.
On line 8, the analyzer analyzes that an arrow function k => x *= k

is subscribed, and the variable x is updated to the interval [6, 12].
Similarly, it analyzes that another arrow function k => y += k is
subscribed on line 9, and the variable y is updated to the abstract
value ⟨"", "123"⟩. Thus, the derived analyzer successfully analyzes
the example program and precisely represents the possible values
of x and y at the end of the program.

6.5 Discussion
In this section, we discuss promising directions for the improvement
of JSAVER and limitations of JISET, the tool used in the extraction of
definitional interpreters from ECMA-262.

6.5.1 Promising Directions of JSAVER. The analyzer JSAES12 auto-
matically derived from ES12 via JSAVER has two directions for
improvement compared to existing hand-written JavaScript static
analyzers.

First, because our approach considers only the semantics de-
scribed in ECMA-262, JSAES12 does not support host environments
such as DOM and Node.js used in modern JavaScript applications.
However, just like existing analyzers, JSAES12 can utilize manual
modeling of host environments to analyze real-world applications.

Second, as described in Section 6.2, JSAES12 is slower than ex-
isting analyzers. While JSAVER derives precise abstract semantics
for all language features, developers of existing analyzers often
model the abstract semantics of specific language features impre-
cisely or even unsoundly to enhance the analysis performance. A
promising direction is to support host environments efficiently,
possibly semi-automatically, and optimize derived analyzers for
better performance and memory use.

6.5.2 Limitations of JISET. In this work, we utilized another tool
JISET to extract a JavaScript definitional interpreter from ECMA-262.
It has two limitations; it 1) covers only about 95% of the algorithm
steps and 2) generates a JavaScript parser slower than hand-written
parsers. Thus, a manual effort is still required for about 5% of the
steps, and JSAVER slows down because of the longer parsing time.
Nevertheless, we believe that JISET significantly reduces the burden
of manual approaches and could generate a faster parser using more
advanced parsing techniques.

7 RELATED WORK
JavaScript Static Analysis. Researchers have proposed JavaScript

static analyzers, such as JSAI [21], SAFE [26, 45], TAJS [20], and
WALA [52], to detect program bugs without concrete execution
and to understand program behaviors. They also presented and
implemented various JavaScript static analysis techniques on these
tools. Since string values of arbitrary expressions can be used in
property accesses, a precise string analysis is more critical for
JavaScript than static analysis for other programming languages.
Thus, several advanced string abstract domains [3, 22, 27, 31] have
been presented for JavaScript. Several researchers presented anal-
ysis techniques [24, 30, 32, 52, 53] to increase imprecise relations
between object properties. Moreover, due to the highly dynamic
nature of JavaScript, static analyzers suffer from heavy computa-
tions as well as imprecise analysis results. Hence, combined analy-
ses [42, 44, 46, 48, 56] with dynamic analyses have been proposed
to enhance analysis performance by leveraging highly optimized
commercial JavaScript engines.

However, all of the existing JavaScript static analyzers cannot
support language features of ES6 or later versions, including let

bindings, arrow functions, generators, and promises. JSAVER re-
solves this problem by automatically deriving JavaScript static ana-
lyzers from language specifications. Xu et al. [58] recently presented
a technique to synthesize data-flow analyzers, but they focused on

1031

An example of static analysis for a JavaScript program.

1[FSE’22] Jihyeok Park, Seungmin An, and Sukyoung Ryu, “Automatically Deriving
JavaScript Static Analyzers from Specifications using Meta-level Static Analysis”

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 23 / 31

Application 2 – Mechanized Specification
To understand syntax and semantics of JavaScript language, we need to
read the official language specification, called ECMA-262.2

/ 55

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

Syntax

Semantics

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

+ JS

However, it consists of 800+ pages with pseudocode-style algorithms as
language semantics. It is laborious to understand and maintain the spec.

2https://tc39.es/ecma262/
COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 24 / 31

https://tc39.es/ecma262/

Application 2 – Mechanized Specification
For example, we need to read the following steps to understand why the
JavaScript program 4 + 2n throws a run-time TypeError:

/ 55

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

8

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

TypeErrorNumber BigInt

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 25 / 31

Application 2 – Mechanized Specification
To alleviate the problem, we design a programming language to represent
algorithms in the spec and automatically extract the semantics from the
language specification.3

/ 5519

JISET - Algorithm Compiler

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

Semantics

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

syntax def ArrayLiteral[2].Evaluation(
 this, ElementList, Elision
){
 let array = [! (ArrayCreate 0)]
 let nextIndex =
 [? (ElementList.ArrayAccumulation array 0)]
 if (! (= Elision absent))
 [? (Elision.ArrayAccumulation array nextIndex)]
 return array
}

118 compile rules for
steps in abstract algorithms

IRES function for ArrayLiteral in ES13

Abstract algorithm for ArrayLiteral in ES13

3[ASE’21] Jihyeok Park, Seungmin An, Wonho Shin, Yusung Sim, and Sukyoung
Ryu, “JSTAR: JavaScript Specification Type Analyzer using Refinement”

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 26 / 31

Application 3 – Program Synthesis
Another application is to synthesize programs from specifications. For
example, we can synthesize JavaScript programs to detect real-world bugs
in JavaScript engines.4

/ 5531

N+1-version Differential Testing

Synthesize Test QuickJS

test

test

test

test

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

4[PLDI’21] Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu,
“Feature-Sensitive Coverage for Conformance Testing of Programming Language
Implementations”

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 27 / 31

Application 3 – Program Synthesis
For example, we found a bug in the SpiderMonkey JavaScript engine
(v107.0b4) used in Firefox by synthesizing the following JavaScript
program from the JavaScript language specification.5

// [EXIT] normal
var x = (async function ([]) {})();
// Assertions
...
$assert.sameValue(Object.getPrototypeOf(globalThis["x"]), Promise.

prototype);
$assert.sameValue(Object.isExtensible(globalThis["x"]), true);
$assert.notCallable(globalThis["x"]);
$assert.notConstructable(globalThis["x"]);
...

While it should be terminated normally, SpiderMonkey engine throws a
run-time TypeError when executing the it.

5https://bugzilla.mozilla.org/show_bug.cgi?id=1799288
COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 28 / 31

https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Application 4 – Explainable AI
We can also use PL foundations to provide a better explainability for AI
systems. For example, we can design a graph description language to
explain the graph learning model.6PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:5

⟨0.2⟩
𝑣1

⟨0.5⟩
𝑣2

⟨0.7⟩
𝑣3

⟨0.8⟩
𝑣4

⟨9⟩

⟨−5⟩ ⟨6⟩

⟨−8⟩

(a) A featured graph 𝐺2

node x <[, 0.3]>

node y <[0.5, 1.0]>

node z

edge (x, y)

edge (y, z) <[5,]>

target node y

(b) A GDL program 𝑃4

⟨[−∞, 0.3]⟩
x

⟨[0.5, 1.0]⟩
y

z

⟨[5,∞]⟩

(c) A graphical representation of 𝑃4

Fig. 3. A running example of GDL

are classified into the label 𝑙2 because of the program 𝑃2. The used programs are simultaneously
provided as explanations. The explanations are guaranteed to be correct because our model actually
classified the nodes with the provided explanations. Existing GNNs, however, do not provide
such correct explanations for their predictions; various GNN explanation techniques have been
developed to explain their predictions. The produced explanations, however, are not guaranteed to
be correct. That is, the provided explanations may not reflect the actual reason for the predictions.

Expressiveness of GDL. Intuitively, a GDL program is a set of subgraphs. For example, the first
GDL program 𝑃1 can be seen as a set of subgraphs describing node patterns as follows:

{ ⟨1.2⟩ ⟨0.2⟩ , ⟨0.4⟩ ⟨0.2⟩ , ⟨0.0⟩ ⟨0.0⟩ , ⟨0.0⟩ ⟨0.5⟩ , . . . }.

The first subgraph ⟨1.2⟩ ⟨0.2⟩ describes a node pattern that the node and a predecessor have
the feature values 1.2 and 0.2, respectively. The node 𝑣1 in Figure 2a is described by the subgraph.
The second subgraph ⟨0.4⟩ ⟨0.2⟩ , which describes 𝑣4 in Figure 2a, illustrates a node pattern
where the node and a predecessor have the feature values 0.4 and 0.2, respectively.

3 GRAPH DESCRIPTION LANGUAGE (GDL)
This section formally defines our graph description language (GDL), which is a declarative program-
ming language for describing target nodes, edges, or graphs themselves in featured graphs.

3.1 Featured Graphs
A featured graph 𝐺 = (𝑉 , 𝐸, F𝑉 , F𝐸) ∈ G is a graph defined with feature vectors for nodes and edges:

• 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of 𝑛 nodes.
• 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} ⊆ 𝑉 ×𝑉 is a set of𝑚 edges.
• F𝑉 ⊆ R𝑛×𝑑 is a node feature matrix for 𝑑-dimensional node feature vectors.
• F𝐸 ⊆ R𝑚×𝑐 is an edge feature matrix for 𝑐-dimensional edge feature vectors.

The 𝑖-th row of F𝑉 or F𝐸 corresponds to the feature vector of the 𝑖-th node 𝑣𝑖 or edge 𝑒𝑖 , respectively.
We use f𝐺𝑣 and f𝐺(𝑣,𝑣′) to denote the feature vector of a node 𝑣 ∈ 𝑉 and an edge (𝑣, 𝑣 ′) ∈ 𝐸, respectively,
in a featured graph 𝐺 .

Example. Figure 3a depicts a featured graph 𝐺2 with 1-dimensional node and edge features:

𝐺2 =

(
𝑉 = { 𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸 = { (𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣2, 𝑣4), (𝑣4, 𝑣3)},

F𝑉 = ⟨ ⟨0.2⟩, ⟨0.5⟩, ⟨0.7⟩, ⟨0.8⟩⟩, F𝐸 = ⟨ ⟨9⟩, ⟨−5⟩, ⟨6⟩, ⟨−8⟩⟩
)

In this example, f𝐺2
𝑣2 = ⟨0.5⟩ denotes the feature vector of the node 𝑣2 in the featured graph 𝐺2, and

f𝐺2
(𝑣2,𝑣4) = ⟨6⟩ denotes the feature vector of the edge (𝑣2, 𝑣4) in the featured graph 𝐺2.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

Using the above graph description language, we can automatically generate
explanations for the classification results of the graph learning model.

6[PLDI’24] Minseok Jeon, Jihyeok Park, and Hakjoo Oh, “PL4XGL: A Programming
Language Approach to Explainable Graph Learning”

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 29 / 31

Final Exam
• Date: 18:30 – 21:00 (150 min.), December 18 (Wed.).
• Location: 205, Woojung Hall of Informatics (우정정보관)
• Coverage: Lectures 14 – 26
• Format: closed book and closed notes

• Fill-in-the-blank questions about the PL concepts.
• Write the evaluation results of given expressions.
• Draw derivation trees of given expressions.
• Define the syntax or semantics of extended language features.
• Define typing rules for the given language features.
• etc.

• Note that there is no class on December 16 (Mon.).

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 30 / 31

• I hope you enjoyed the class!

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 27 – Course Review December 11, 2024 31 / 31

https://plrg.korea.ac.kr

