
Lecture 4 – Identifiers (1)
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 1 / 31

Recall
• ADT for Abstract Syntax of AE

enum Expr:
case Num(number: BigInt)
case Add(left: Expr, right: Expr)
case Mul(left: Expr, right: Expr)

• Parser for Concrete Syntax of AE

lazy val expr: P[Expr] = ...

• Interpreter for Semantics of AE

def interp(expr: Expr): Value = ...

• In this lecture, we will learn identifiers.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 2 / 31

Recall
• ADT for Abstract Syntax of AE

enum Expr:
case Num(number: BigInt)
case Add(left: Expr, right: Expr)
case Mul(left: Expr, right: Expr)

• Parser for Concrete Syntax of AE

lazy val expr: P[Expr] = ...

• Interpreter for Semantics of AE

def interp(expr: Expr): Value = ...

• In this lecture, we will learn identifiers.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 2 / 31

Contents

1. Identifiers
Bound Identifiers
Free Identifiers
Shadowing

2. VAE – AE with Variables
Concrete Syntax
Abstract Syntax
Examples

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 3 / 31

Contents

1. Identifiers
Bound Identifiers
Free Identifiers
Shadowing

2. VAE – AE with Variables
Concrete Syntax
Abstract Syntax
Examples

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 4 / 31

Identifiers
An identifier is a name for a certain element in a program.

In Scala, there are diverse kinds of identifiers:

/* Scala */

// variable names
val x: Int = 42

// function and parameter names
def f(a: Int, b: Int): Int = a + b

// class and field names
case class Person(name: String, age: Int)

...

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 5 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

Binding
Occurrences

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 7 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

scope

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 8 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

scope

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 9 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

scope

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 10 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

scope

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 11 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

scope

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 12 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

scope

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 13 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

Bound
Occurrences

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 14 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

Bound
Occurrences

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 14 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 15 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 16 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 17 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 18 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 19 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 20 / 31

Bound IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 21 / 31

Free IdentifiersBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

Free
Identifiers

A free identifier is an identifier that is not defined in the current scope
of the program.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 22 / 31

ShadowingBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

Shadowing

Shadowing
Identifier

Shadowed
Identifier

Shadowing means that the innermost binding occurrence shadows the
outer binding occurrences of the same name.

• A shadowing identifier is an identifier that shadows another
• A shadowed identifier is an identifier that is shadowed by another.

Note that shadowing is NOT a mutation.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 23 / 31

ShadowingBound Identifiers
/* Scala */
val x: Int = 3

val y: Int = x + z

def add(a: Int, b: Int): Int =
val x: Int = a + b
x + add(y, z)

add(x, b)

A bound identifier is an identifier that is defined in a program.
• A binding occurrence of an identifier denotes its definition site.
• A scope of an identifier denotes where the identifier is usable.
• A bound occurrence of an identifier denotes its lookup site.

Let’s draw arrows from each bound occurrence to its binding occurrence.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 6 / 19

Shadowing

Shadowing
Identifier

Shadowed
Identifier

Shadowing means that the innermost binding occurrence shadows the
outer binding occurrences of the same name.

• A shadowing identifier is an identifier that shadows another
• A shadowed identifier is an identifier that is shadowed by another.

Note that shadowing is NOT a mutation.

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 23 / 31

Contents

1. Identifiers
Bound Identifiers
Free Identifiers
Shadowing

2. VAE – AE with Variables
Concrete Syntax
Abstract Syntax
Examples

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 24 / 31

VAE – AE with Variables
Now, we want to extend AE into VAE with variables:

/* VAE */
val x = 1 + 2; // x = 1 + 2 = 3
val y = x + 3; // y = x + 3 = 3 + 3 = 6
y + 4 // 6 + 4 = 10

First, we define the concrete syntax of identifiers used in VAE:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<number> ::= "-"? <digit>+
<alphabet> ::= "A" | "B" | "C" | ... | "Z" | "a" | "b" | "c" | ... | "z"
<idstart> ::= <alphabet> | "_"
<idcont> ::= <alphabet> | "_" | <digit>
<keyword> ::= "val"
<id> ::= <idstart> <idcont>* butnot <keyword>

For example, the following are valid identifiers:
x y get_name getName add42

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 25 / 31

VAE – AE with Variables
Now, we want to extend AE into VAE with variables:

/* VAE */
val x = 1 + 2; // x = 1 + 2 = 3
val y = x + 3; // y = x + 3 = 3 + 3 = 6
y + 4 // 6 + 4 = 10

First, we define the concrete syntax of identifiers used in VAE:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<number> ::= "-"? <digit>+
<alphabet> ::= "A" | "B" | "C" | ... | "Z" | "a" | "b" | "c" | ... | "z"
<idstart> ::= <alphabet> | "_"
<idcont> ::= <alphabet> | "_" | <digit>
<keyword> ::= "val"
<id> ::= <idstart> <idcont>* butnot <keyword>

For example, the following are valid identifiers:
x y get_name getName add42

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 25 / 31

VAE – AE with Variables
Now, we want to extend AE into VAE with variables:

/* VAE */
val x = 1 + 2; // x = 1 + 2 = 3
val y = x + 3; // y = x + 3 = 3 + 3 = 6
y + 4 // 6 + 4 = 10

First, we define the concrete syntax of identifiers used in VAE:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<number> ::= "-"? <digit>+
<alphabet> ::= "A" | "B" | "C" | ... | "Z" | "a" | "b" | "c" | ... | "z"
<idstart> ::= <alphabet> | "_"
<idcont> ::= <alphabet> | "_" | <digit>
<keyword> ::= "val"
<id> ::= <idstart> <idcont>* butnot <keyword>

For example, the following are valid identifiers:
x y get_name getName add42

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 25 / 31

Concrete Syntax
Then, let’s define the concrete syntax of VAE in BNF:

<expr> ::= <number>
| <expr> "+" <expr>
| <expr> "*" <expr>
| "(" <expr> ")"
| "{" <expr> "}"
| "val" <id> "=" <expr> ";" <expr>
| <id>

Note that each variable definition creates a new scope. For example:
/* VAE */
val x = 1 + 2;
val y = x + 3;
y + 4

means
/* VAE */
val x = 1 + 2;
{ // scope of x

val y = x + 3;
{ // scope of y

y + 4
}

}

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 26 / 31

Concrete Syntax
Then, let’s define the concrete syntax of VAE in BNF:

<expr> ::= <number>
| <expr> "+" <expr>
| <expr> "*" <expr>
| "(" <expr> ")"
| "{" <expr> "}"
| "val" <id> "=" <expr> ";" <expr>
| <id>

Note that each variable definition creates a new scope.

For example:
/* VAE */
val x = 1 + 2;
val y = x + 3;
y + 4

means
/* VAE */
val x = 1 + 2;
{ // scope of x

val y = x + 3;
{ // scope of y

y + 4
}

}

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 26 / 31

Concrete Syntax
Then, let’s define the concrete syntax of VAE in BNF:

<expr> ::= <number>
| <expr> "+" <expr>
| <expr> "*" <expr>
| "(" <expr> ")"
| "{" <expr> "}"
| "val" <id> "=" <expr> ";" <expr>
| <id>

Note that each variable definition creates a new scope. For example:
/* VAE */
val x = 1 + 2;
val y = x + 3;
y + 4

means
/* VAE */
val x = 1 + 2;
{ // scope of x

val y = x + 3;
{ // scope of y

y + 4
}

}

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 26 / 31

Concrete Syntax
Then, let’s define the concrete syntax of VAE in BNF:

<expr> ::= <number>
| <expr> "+" <expr>
| <expr> "*" <expr>
| "(" <expr> ")"
| "{" <expr> "}"
| "val" <id> "=" <expr> ";" <expr>
| <id>

Note that each variable definition creates a new scope. For example:
/* VAE */
val x = 1 + 2;
val y = x + 3;
y + 4

means
/* VAE */
val x = 1 + 2;
{ // scope of x

val y = x + 3;
{ // scope of y

y + 4
}

}

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 26 / 31

Abstract Syntax
Let’s define the abstract syntax of VAE in BNF:

Numbers n ∈ Z (BigInt)
Identifiers x ∈ X (String)

Expressions e ::= n (Num)
| e + e (Add)
| e * e (Mul)
| val x = e; e (Val)
| x (Id)

We can define an ADT for the abstract syntax of VAE in Scala:

enum Expr:
case Num(number: BigInt)
case Add(left: Expr, right: Expr)
case Mul(left: Expr, right: Expr)
// variable definition
case Val(name: String, init: Expr, body: Expr)
// variable lookup
case Id(name: String)

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 27 / 31

Abstract Syntax
Let’s define the abstract syntax of VAE in BNF:

Numbers n ∈ Z (BigInt)
Identifiers x ∈ X (String)

Expressions e ::= n (Num)
| e + e (Add)
| e * e (Mul)
| val x = e; e (Val)
| x (Id)

We can define an ADT for the abstract syntax of VAE in Scala:

enum Expr:
case Num(number: BigInt)
case Add(left: Expr, right: Expr)
case Mul(left: Expr, right: Expr)
// variable definition
case Val(name: String, init: Expr, body: Expr)
// variable lookup
case Id(name: String)

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 27 / 31

Abstract Syntax

enum Expr:
case Num(number: BigInt)
case Add(left: Expr, right: Expr)
case Mul(left: Expr, right: Expr)
case Val(name: String, init: Expr, body: Expr)
case Id(name: String)

Parser implementation is given and you don’t need to implement it.
You can freely use Expr to parse VAE programs as follows:

Expr("val x = 1; x + 2")
// Val("x", Num(1), Add(Id("x"), Num(2)))

Expr("val a = 1; val b = 2; a + b")
// Val("a", Num(1), Val("b", Num(2), Add(Id("a"), Id("b"))))

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 28 / 31

Examples
For each VAE program, please draw:

• an arrow from each bound occurrence to its binding occurrence.
• a dotted arrow from each shadowing variable to its shadowed one.
• an X mark on each free variable.

/* VAE */
val x = 1; x

/* VAE */
val x = x + 1;
val y = x * 2;
val x = y + x;
x * z

/* VAE */
val x = 1;
val y = {

val x = 2 * x;
{ val y = x; y } + { val y = 3; y }

};
x + y

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 29 / 31

Summary

1. Identifiers
Bound Identifiers
Free Identifiers
Shadowing

2. VAE – AE with Variables
Concrete Syntax
Abstract Syntax
Examples

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 30 / 31

Next Lecture
• Identifiers (2)

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 4 – Identifiers (1) September 16, 2024 31 / 31

https://plrg.korea.ac.kr

	Identifiers
	Bound Identifiers
	Free Identifiers
	Shadowing

	VAE – AE with Variables
	Concrete Syntax
	Abstract Syntax
	Examples

