Lecture 8 – Lambda Calculus COSE212: Programming Languages

Jihyeok Park

PLRG

2024 Fall

## Recall



- FVAE VAE with First-Class Functions
  - First-Class Functions
  - Concrete and Abstract Syntax
  - Interpreter and Natural Semantics with Closures
  - Static and Dynamic Scoping
- In this lecture, we will learn syntactic sugar and lambda calculus

### Contents



#### 1. Syntactic Sugar

No More val FAE – Removing val from FVAE Syntactic Sugar and Desugaring

#### 2. Lambda Calculus

Definition Church Encodings Church-Turing Thesis

### Contents



#### 1. Syntactic Sugar

No More val FAE – Removing val from FVAE Syntactic Sugar and Desugaring

#### 2. Lambda Calculus

Definition Church Encodings Church-Turing Thesis

### No More val



/\* FVAE \*/
val x = 1; x + 2

It assigns a value 1 to the variable x, and then evaluates the body expression x + 2 with the environment  $[x \mapsto 1]$ .

It is same as:

/\* FVAE \*/ (x => x + 2)(1)

It assigns a value (argument) 1 to the parameter x, and then evaluates the **body expression** x + 2 with the environment  $[x \mapsto 1]$ .

### No More val



In general, the following two expressions are equivalent:

val 
$$x$$
 =  $e_1; \ e_2$   $\quad$  is equivalent to  $\quad (\lambda x.e_2)(e_1)$  Why?

The following inference rule for the semantics of val  $x = e_1$ ;  $e_2$ :

$$\operatorname{Val} \frac{\sigma \vdash e_1 \Rightarrow v_1 \quad \sigma[x \mapsto v_1] \vdash e_2 \Rightarrow v_2}{\sigma \vdash \operatorname{val} x = e_1; \ e_2 \Rightarrow v_2}$$

is equivalent to the following inference rule for the semantics of the combination  $(\lambda x.e_2)(e_1)$  of a anonymous function and an application:

$$\begin{split} & \operatorname{Fun}_{\operatorname{App}} \frac{\overline{\sigma \vdash \lambda x. e_2 \Rightarrow \langle \lambda x. e_2, \sigma \rangle} \quad \sigma \vdash e_1 \Rightarrow v_1 \quad \sigma[x \mapsto v_1] \vdash e_2 \Rightarrow v_2 }{\sigma \vdash (\lambda x. e_2)(e_1) \Rightarrow v_2} \end{split}$$

## FAE – Removing val from FVAE



Then, we can define a smaller language FAE

Expressions
$$e ::= n$$
(Num) $| e + e |$ (Add) $| e * e |$ (Mul) $| x |$ (Id) $| \lambda x.e |$ (Fun) $| e(e) |$ (App)

by removing val from FVAE using the following equivalence:

val  $x = e_1; e_2$  is equivalent to  $(\lambda x.e_2)(e_1)$ 

### Definition (Syntactic Sugar)

Syntactic elements that can be expressed in terms of other syntactic elements are called **syntactic sugar**.

Definition (Desugaring)

**Desugaring** is a translation for removing syntactic sugar.

$$\mathcal{D}\llbracket - \rrbracket : \mathbb{E} \to \mathbb{E}$$

For example, we can define the desugaring of val as follows:

$$\mathcal{D}[\![\texttt{val } x \texttt{ = } e_1; \ e_2]\!] = (\lambda x.e_2)(e_1)$$

Is it correct? No! Why?

# Syntactic Sugar and Desugaring

$$\mathcal{D}[\![\texttt{val } x \texttt{ = } e_1; \ e_2]\!] = (\lambda x.e_2)(e_1)$$

For example,

$$\mathcal{D}[\![\texttt{val x = 1}; \ 2 + (\texttt{val y = 3}; \ \texttt{x * y})]\!] = \lambda\texttt{x}.(2 + (\texttt{val y = 3}; \ \texttt{x * y}))(1)$$

Without desugaring rule for addition, the expression (val y = 3; x \* y) in the right-hand side of the addition cannot be desugared.

So, we need to **recursively desugar** sub-expressions of the given expression even if they are not syntactic sugars.

$$\mathcal{D}\llbracket \texttt{val } x \texttt{ = } e_1; \ e_2 \rrbracket = (\lambda x. \mathcal{D}\llbracket e_2 \rrbracket) (\mathcal{D}\llbracket e_1 \rrbracket)$$

 $\mathcal{D}\llbracket n \rrbracket = n \qquad \mathcal{D}\llbracket x \rrbracket = x$  $\mathcal{D}\llbracket e_1 + e_2 \rrbracket = \mathcal{D}\llbracket e_1 \rrbracket + \mathcal{D}\llbracket e_2 \rrbracket \qquad \mathcal{D}\llbracket \lambda x.e \rrbracket = \lambda x.\mathcal{D}\llbracket e \rrbracket$  $\mathcal{D}\llbracket e_1 * e_2 \rrbracket = \mathcal{D}\llbracket e_1 \rrbracket * \mathcal{D}\llbracket e_2 \rrbracket \qquad \mathcal{D}\llbracket e_1(e_2) \rrbracket = \mathcal{D}\llbracket e_1 \rrbracket (\mathcal{D}\llbracket e_2 \rrbracket)$ Then, it can be desugared as follows:

$$\mathcal{D}[\![\texttt{val x = 1}; \ 2 + (\texttt{val y = 3}; \ \texttt{x * y})]\!] = \lambda\texttt{x}.(2 + (\lambda\texttt{y}.\texttt{x * y})(3))(1)$$

# Syntactic Sugar and Desugaring



$$\begin{array}{cccc} \mathcal{D}\llbracket \mathrm{val} \ x = e_1; \ e_2 \rrbracket = (\lambda x.\mathcal{D}\llbracket e_2 \rrbracket)(\mathcal{D}\llbracket e_1 \rrbracket) \\ \mathcal{D}\llbracket n \rrbracket &= n & \mathcal{D}\llbracket x \rrbracket &= x \\ \mathcal{D}\llbracket e_1 + e_2 \rrbracket &= \mathcal{D}\llbracket e_1 \rrbracket + \mathcal{D}\llbracket e_2 \rrbracket & \mathcal{D}\llbracket \lambda x.e \rrbracket &= \lambda x.\mathcal{D}\llbracket e \rrbracket \\ \mathcal{D}\llbracket e_1 \ast e_2 \rrbracket &= \mathcal{D}\llbracket e_1 \rrbracket \ast \mathcal{D}\llbracket e_2 \rrbracket & \mathcal{D}\llbracket e_1(e_2) \rrbracket &= \mathcal{D}\llbracket e_1 \rrbracket(\mathcal{D}\llbracket e_2 \rrbracket) \end{array}$$

We can also implement **desugaring** in Scala:

| <pre>def desugar(expr: Expr): Expr = expr match</pre> |          |       |    |                                                |  |  |
|-------------------------------------------------------|----------|-------|----|------------------------------------------------|--|--|
| cas                                                   | e Val(x, | i, b) | => | <pre>App(Fun(x, desugar(b)), desugar(i))</pre> |  |  |
| cas                                                   | e Num(n) |       | => | Num(n)                                         |  |  |
| cas                                                   | e Add(l, | r)    | => | <pre>Add(desugar(1), desugar(r))</pre>         |  |  |
| cas                                                   | e Mul(l, | r)    | => | Mul(desugar(l), desugar(r))                    |  |  |
| cas                                                   | e Id(x)  |       | => | Id(x)                                          |  |  |
| cas                                                   | e Fun(p, | b)    | => | Fun(p, desugar(b))                             |  |  |
| cas                                                   | e App(f, | e)    | => | <pre>App(desugar(f), desugar(e))</pre>         |  |  |

Then, we can desugar the example FVAE expression as follows:

```
val expr: Expr = Expr("val x = 1; 2 + (val y = 3; x * y)")
desugar(expr) == Expr("(x => 2 + (y => x * y)(3))(1)")
```

COSE212 @ Korea University

# Syntactic Sugar and Desugaring



Most programming languages have syntactic sugar:

• Scala

|    | <pre>for (x &lt;- list) yield x * 2</pre> | ≡   | list.map(x => x * 2)      |  |  |  |  |  |  |
|----|-------------------------------------------|-----|---------------------------|--|--|--|--|--|--|
| C· | C++                                       |     |                           |  |  |  |  |  |  |
|    | arr[i] + obi->field                       | 1 = | *(arr + i) + (*obi) field |  |  |  |  |  |  |

 $\equiv$ 

JavaScript<sup>1</sup>

x ||= y; x &&= y;

$$x \mid \mid (x = y); x \&\& (x = y);$$

Haskell

. . .

do x <- f; g x

$$\equiv$$
 f >>= (\x -> g x)

<sup>1</sup>https://babeljs.io/repl

COSE212 @ Korea University

### Contents



### 1. Syntactic Sugar

No More val FAE – Removing val from FVAE Syntactic Sugar and Desugaring

#### 2. Lambda Calculus

Definition Church Encodings Church-Turing Thesis

# Lambda Calculus



What is the minimal language that can express all the syntactic elements of FVAE? Lambda calculus (LC)!

The **lambda calculus (LC)** is a language only consisting of 1) **variables**, 2) **functions**, and 3) **applications**:

Expressions 
$$e ::= x$$
  
 $| \lambda x.e$   
 $| e(e)$ 

We already showed that the **variable definition** can be desugared to a combination of a **function definition** and an **application**:

$$\mathcal{D}[\![\texttt{val } x \texttt{ = } e_1; \ e_2]\!] = (\lambda x. \mathcal{D}[\![e_2]\!])(\mathcal{D}[\![e_1]\!])$$

Then, how can we desugar other syntactic elements of FVAE?

### Let's learn the Church encodings!

COSE212 @ Korea University

## Church Encodings – Church Numerals



Church encodings are ways to encode data and operations in the lambda calculus (LC).

For example, **Church numerals** are a way to encode **natural numbers** in the **lambda calculus (LC)**.

The key idea is to encode a **natural number** n as a **function** that takes another function f and an argument x and applies f to x n times:

$$\mathcal{D}\llbracket 0 \rrbracket = \lambda f.\lambda x.x$$
  

$$\mathcal{D}\llbracket 1 \rrbracket = \lambda f.\lambda x.f(x)$$
  

$$\mathcal{D}\llbracket 2 \rrbracket = \lambda f.\lambda x.f(f(x))$$
  

$$\mathcal{D}\llbracket 3 \rrbracket = \lambda f.\lambda x.f(f(f(x)))$$
  

$$\vdots$$

$$\begin{aligned} \mathcal{D}\llbracket e_1 + e_2 \rrbracket &= \lambda f.\lambda x. \mathcal{D}\llbracket e_1 \rrbracket(f)(\mathcal{D}\llbracket e_2 \rrbracket(f)(x)) \\ \mathcal{D}\llbracket e_1 \ast e_2 \rrbracket &= \lambda f.\lambda x. \mathcal{D}\llbracket e_1 \rrbracket(\mathcal{D}\llbracket e_2 \rrbracket(f))(x) \end{aligned}$$

# Church Encodings – Church Numerals



For example,

$$\begin{aligned} \mathcal{D}\llbracket 1 + 1 \rrbracket &= \lambda f.\lambda x. \mathcal{D}\llbracket 1 \rrbracket(f)(\mathcal{D}\llbracket 1 \rrbracket(f)(x)) \\ &= \lambda f.\lambda x. (\lambda f.\lambda x. f(x))(f)((\lambda f.\lambda x. f(x))(f)(x)) \\ &= \lambda f.\lambda x. f((\lambda f.\lambda x. f(x))(f)(x)) \\ &= \lambda f.\lambda x. f(f(x)) \\ &= \mathcal{D}\llbracket 2 \rrbracket \end{aligned}$$

We can represent other data or operations in the **LC** using **Church** encodings, such as integers, booleans, pairs, lists, and so on.<sup>2</sup>

Let's see one more example of **Church encoding** for **booleans** and **logical operations** (i.e., **Church booleans**).

<sup>&</sup>lt;sup>2</sup>https://en.wikipedia.org/wiki/Church\_encoding

## Church Encodings – Church Booleans



The key idea is to encode a **boolean** b as a **function** that takes two arguments t and f and applies t if b is true or f if b is false:

$$\begin{split} \mathcal{D}[\![\texttt{true}]\!] &= \lambda t.\lambda f.t & \mathcal{D}[\![\texttt{if}(e_1) \ e_2 \ \texttt{else} \ e_3]\!] = \mathcal{D}[\![e_1]\!](\mathcal{D}[\![e_2]\!])(\mathcal{D}[\![e_3]\!]) \\ \mathcal{D}[\![\texttt{false}]\!] &= \lambda t.\lambda f.f & \mathcal{D}[\![e_1 \ \texttt{kk} \ e_2]\!] &= \mathcal{D}[\![e_1]\!](\mathcal{D}[\![e_2]\!])(\mathcal{D}[\![e_1]\!]) \\ \mathcal{D}[\![e_1 \ \mid \mid e_2]\!] &= \mathcal{D}[\![e_1]\!](\mathcal{D}[\![e_1]\!])(\mathcal{D}[\![e_2]\!]) \\ \mathcal{D}[\![! \ e]\!] &= \lambda t.\lambda f.\mathcal{D}[\![e]\!](f)(t) \end{split}$$

For example,

$$\begin{split} \mathcal{D}[\![\texttt{true \&\& false}]\!] &= \mathcal{D}[\![\texttt{true}]\!](\mathcal{D}[\![\texttt{false}]\!])(\mathcal{D}[\![\texttt{true}]\!]) \\ &= (\lambda t.\lambda f.t)(\mathcal{D}[\![\texttt{false}]\!])(\mathcal{D}[\![\texttt{true}]\!]) \\ &= \mathcal{D}[\![\texttt{false}]\!] \end{split}$$

# Church-Turing Thesis





Alonzo Church invented lambda calculus in 1930s, and it became the foundation of programming languages:

$$e ::= x \mid \lambda x.e \mid e(e)$$

Alan Turing invented Turing machines (TM) in 1936, and it became the foundation of **computers**:

0 | 1 | 1

q,

0 0



### Church-Turing Thesis: Lambda Calculus is Turing complete.

Any real-world computation can be translated into an equivalent computation involving a Turing machine or can be done using lambda calculus.

В

 $0 \mid 0$ 

COSE212 @ Korea University

## Homework #2



https://github.com/ku-plrg-classroom/docs/tree/main/cose212/cobalt

- Please see above document on GitHub:
  - Implement interp function.
  - 2 Implement subExpr1 and subExpr2 functions.
- The due date is 23:59 on Oct. 14 (Mon.).
- Please only submit Implementation.scala file to <u>Blackboard</u>.

# Summary



#### 1. Syntactic Sugar

No More val FAE – Removing val from FVAE Syntactic Sugar and Desugaring

#### 2. Lambda Calculus

Definition Church Encodings Church-Turing Thesis

### Next Lecture



Recursive Functions

Jihyeok Park jihyeok\_park@korea.ac.kr https://plrg.korea.ac.kr