
Lecture 8 – Lambda Calculus
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 1 / 20

Recall
• FVAE – VAE with First-Class Functions

• First-Class Functions
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics with Closures
• Static and Dynamic Scoping

• In this lecture, we will learn syntactic sugar and lambda calculus

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 2 / 20

Recall
• FVAE – VAE with First-Class Functions

• First-Class Functions
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics with Closures
• Static and Dynamic Scoping

• In this lecture, we will learn syntactic sugar and lambda calculus

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 2 / 20

Contents

1. Syntactic Sugar
No More val
FAE – Removing val from FVAE
Syntactic Sugar and Desugaring

2. Lambda Calculus
Definition
Church Encodings
Church-Turing Thesis

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 3 / 20

Contents

1. Syntactic Sugar
No More val
FAE – Removing val from FVAE
Syntactic Sugar and Desugaring

2. Lambda Calculus
Definition
Church Encodings
Church-Turing Thesis

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 4 / 20

No More val

/* FVAE */
val x = 1; x + 2

It assigns a value 1 to the variable x, and then evaluates the body
expression x + 2 with the environment [x 7→ 1].

It is same as:

/* FVAE */
(x => x + 2)(1)

It assigns a value (argument) 1 to the parameter x, and then evaluates
the body expression x + 2 with the environment [x 7→ 1].

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 5 / 20

No More val

/* FVAE */
val x = 1; x + 2

It assigns a value 1 to the variable x, and then evaluates the body
expression x + 2 with the environment [x 7→ 1].

It is same as:

/* FVAE */
(x => x + 2)(1)

It assigns a value (argument) 1 to the parameter x, and then evaluates
the body expression x + 2 with the environment [x 7→ 1].

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 5 / 20

No More val
In general, the following two expressions are equivalent:

val x = e1; e2 is equivalent to (λx.e2)(e1)

Why?

The following inference rule for the semantics of val x = e1; e2:

Val
σ ⊢ e1 ⇒ v1 σ[x 7→ v1] ⊢ e2 ⇒ v2

σ ⊢ val x = e1; e2 ⇒ v2

is equivalent to the following inference rule for the semantics of the
combination (λx.e2)(e1) of a anonymous function and an application:

App

Fun
σ ⊢ λx.e2 ⇒ ⟨λx.e2, σ⟩ σ ⊢ e1 ⇒ v1 σ[x 7→ v1] ⊢ e2 ⇒ v2

σ ⊢ (λx.e2)(e1) ⇒ v2

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 6 / 20

No More val
In general, the following two expressions are equivalent:

val x = e1; e2 is equivalent to (λx.e2)(e1)

Why?

The following inference rule for the semantics of val x = e1; e2:

Val
σ ⊢ e1 ⇒ v1 σ[x 7→ v1] ⊢ e2 ⇒ v2

σ ⊢ val x = e1; e2 ⇒ v2

is equivalent to the following inference rule for the semantics of the
combination (λx.e2)(e1) of a anonymous function and an application:

App

Fun
σ ⊢ λx.e2 ⇒ ⟨λx.e2, σ⟩ σ ⊢ e1 ⇒ v1 σ[x 7→ v1] ⊢ e2 ⇒ v2

σ ⊢ (λx.e2)(e1) ⇒ v2

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 6 / 20

FAE – Removing val from FVAE
Then, we can define a smaller language FAE

Expressions e ::= n (Num)
| e + e (Add)
| e * e (Mul)
| x (Id)
| λx.e (Fun)
| e(e) (App)

by removing val from FVAE using the following equivalence:

val x = e1; e2 is equivalent to (λx.e2)(e1)

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 7 / 20

Syntactic Sugar and Desugaring

Definition (Syntactic Sugar)
Syntactic elements that can be expressed in terms of other syntactic
elements are called syntactic sugar.

Definition (Desugaring)
Desugaring is a translation for removing syntactic sugar.

DJ−K : E → E

For example, we can define the desugaring of val as follows:

DJval x = e1; e2K = (λx.e2)(e1)

Is it correct? No! Why?

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 8 / 20

Syntactic Sugar and Desugaring

Definition (Syntactic Sugar)
Syntactic elements that can be expressed in terms of other syntactic
elements are called syntactic sugar.

Definition (Desugaring)
Desugaring is a translation for removing syntactic sugar.

DJ−K : E → E

For example, we can define the desugaring of val as follows:

DJval x = e1; e2K = (λx.e2)(e1)

Is it correct? No! Why?

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 8 / 20

Syntactic Sugar and Desugaring

Definition (Syntactic Sugar)
Syntactic elements that can be expressed in terms of other syntactic
elements are called syntactic sugar.

Definition (Desugaring)
Desugaring is a translation for removing syntactic sugar.

DJ−K : E → E

For example, we can define the desugaring of val as follows:

DJval x = e1; e2K = (λx.e2)(e1)

Is it correct?

No! Why?

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 8 / 20

Syntactic Sugar and Desugaring

Definition (Syntactic Sugar)
Syntactic elements that can be expressed in terms of other syntactic
elements are called syntactic sugar.

Definition (Desugaring)
Desugaring is a translation for removing syntactic sugar.

DJ−K : E → E

For example, we can define the desugaring of val as follows:

DJval x = e1; e2K = (λx.e2)(e1)

Is it correct? No! Why?

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 8 / 20

Syntactic Sugar and Desugaring
DJval x = e1; e2K = (λx.e2)(e1)

For example,
DJval x = 1; 2 + (val y = 3; x * y)K = λx.(2 + (val y = 3; x * y))(1)

Without desugaring rule for addition, the expression (val y = 3; x * y) in
the right-hand side of the addition cannot be desugared.

So, we need to recursively desugar sub-expressions of the given
expression even if they are not syntactic sugars.

DJval x = e1; e2K = (λx.DJe2K)(DJe1K)
DJnK = n DJxK = x
DJe1 + e2K = DJe1K + DJe2K DJλx.eK = λx.DJeK
DJe1 * e2K = DJe1K * DJe2K DJe1(e2)K = DJe1K(DJe2K)

Then, it can be desugared as follows:
DJval x = 1; 2 + (val y = 3; x * y)K = λx.(2 + (λy.x * y)(3))(1)

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 9 / 20

Syntactic Sugar and Desugaring
DJval x = e1; e2K = (λx.e2)(e1)

For example,
DJval x = 1; 2 + (val y = 3; x * y)K = λx.(2 + (val y = 3; x * y))(1)

Without desugaring rule for addition, the expression (val y = 3; x * y) in
the right-hand side of the addition cannot be desugared.

So, we need to recursively desugar sub-expressions of the given
expression even if they are not syntactic sugars.

DJval x = e1; e2K = (λx.DJe2K)(DJe1K)
DJnK = n DJxK = x
DJe1 + e2K = DJe1K + DJe2K DJλx.eK = λx.DJeK
DJe1 * e2K = DJe1K * DJe2K DJe1(e2)K = DJe1K(DJe2K)

Then, it can be desugared as follows:
DJval x = 1; 2 + (val y = 3; x * y)K = λx.(2 + (λy.x * y)(3))(1)

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 9 / 20

Syntactic Sugar and Desugaring
DJval x = e1; e2K = (λx.e2)(e1)

For example,
DJval x = 1; 2 + (val y = 3; x * y)K = λx.(2 + (val y = 3; x * y))(1)

Without desugaring rule for addition, the expression (val y = 3; x * y) in
the right-hand side of the addition cannot be desugared.

So, we need to recursively desugar sub-expressions of the given
expression even if they are not syntactic sugars.

DJval x = e1; e2K = (λx.DJe2K)(DJe1K)
DJnK = n DJxK = x
DJe1 + e2K = DJe1K + DJe2K DJλx.eK = λx.DJeK
DJe1 * e2K = DJe1K * DJe2K DJe1(e2)K = DJe1K(DJe2K)

Then, it can be desugared as follows:
DJval x = 1; 2 + (val y = 3; x * y)K = λx.(2 + (λy.x * y)(3))(1)

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 9 / 20

Syntactic Sugar and Desugaring
DJval x = e1; e2K = (λx.DJe2K)(DJe1K)

DJnK = n DJxK = x
DJe1 + e2K = DJe1K + DJe2K DJλx.eK = λx.DJeK
DJe1 * e2K = DJe1K * DJe2K DJe1(e2)K = DJe1K(DJe2K)

We can also implement desugaring in Scala:

def desugar(expr: Expr): Expr = expr match
case Val(x, i, b) => App(Fun(x, desugar(b)), desugar(i))
case Num(n) => Num(n)
case Add(l, r) => Add(desugar(l), desugar(r))
case Mul(l, r) => Mul(desugar(l), desugar(r))
case Id(x) => Id(x)
case Fun(p, b) => Fun(p, desugar(b))
case App(f, e) => App(desugar(f), desugar(e))

Then, we can desugar the example FVAE expression as follows:

val expr: Expr = Expr("val x = 1; 2 + (val y = 3; x * y)")
desugar(expr) == Expr("(x => 2 + (y => x * y)(3))(1)")

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 10 / 20

Syntactic Sugar and Desugaring
DJval x = e1; e2K = (λx.DJe2K)(DJe1K)

DJnK = n DJxK = x
DJe1 + e2K = DJe1K + DJe2K DJλx.eK = λx.DJeK
DJe1 * e2K = DJe1K * DJe2K DJe1(e2)K = DJe1K(DJe2K)

We can also implement desugaring in Scala:

def desugar(expr: Expr): Expr = expr match
case Val(x, i, b) => App(Fun(x, desugar(b)), desugar(i))
case Num(n) => Num(n)
case Add(l, r) => Add(desugar(l), desugar(r))
case Mul(l, r) => Mul(desugar(l), desugar(r))
case Id(x) => Id(x)
case Fun(p, b) => Fun(p, desugar(b))
case App(f, e) => App(desugar(f), desugar(e))

Then, we can desugar the example FVAE expression as follows:

val expr: Expr = Expr("val x = 1; 2 + (val y = 3; x * y)")
desugar(expr) == Expr("(x => 2 + (y => x * y)(3))(1)")

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 10 / 20

Syntactic Sugar and Desugaring
Most programming languages have syntactic sugar:

• Scala

for (x <- list) yield x * 2 ≡ list.map(x => x * 2)

• C++

arr[i] + obj->field ≡ *(arr + i) + (*obj).field

• JavaScript1

x ||= y; x &&= y; ≡ x || (x = y); x && (x = y);

• Haskell

do x <- f; g x ≡ f >>= (\x -> g x)

• . . .

1https://babeljs.io/repl
COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 11 / 20

https://babeljs.io/repl

Contents

1. Syntactic Sugar
No More val
FAE – Removing val from FVAE
Syntactic Sugar and Desugaring

2. Lambda Calculus
Definition
Church Encodings
Church-Turing Thesis

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 12 / 20

Lambda Calculus
What is the minimal language that can express all the syntactic elements
of FVAE?

Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables,
2) functions, and 3) applications:

Expressions e ::= x
| λx.e
| e(e)

We already showed that the variable definition can be desugared to a
combination of a function definition and an application:

DJval x = e1; e2K = (λx.DJe2K)(DJe1K)

Then, how can we desugar other syntactic elements of FVAE?

Let’s learn the Church encodings!

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 13 / 20

Lambda Calculus
What is the minimal language that can express all the syntactic elements
of FVAE? Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables,
2) functions, and 3) applications:

Expressions e ::= x
| λx.e
| e(e)

We already showed that the variable definition can be desugared to a
combination of a function definition and an application:

DJval x = e1; e2K = (λx.DJe2K)(DJe1K)

Then, how can we desugar other syntactic elements of FVAE?

Let’s learn the Church encodings!

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 13 / 20

Lambda Calculus
What is the minimal language that can express all the syntactic elements
of FVAE? Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables,
2) functions, and 3) applications:

Expressions e ::= x
| λx.e
| e(e)

We already showed that the variable definition can be desugared to a
combination of a function definition and an application:

DJval x = e1; e2K = (λx.DJe2K)(DJe1K)

Then, how can we desugar other syntactic elements of FVAE?

Let’s learn the Church encodings!

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 13 / 20

Lambda Calculus
What is the minimal language that can express all the syntactic elements
of FVAE? Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables,
2) functions, and 3) applications:

Expressions e ::= x
| λx.e
| e(e)

We already showed that the variable definition can be desugared to a
combination of a function definition and an application:

DJval x = e1; e2K = (λx.DJe2K)(DJe1K)

Then, how can we desugar other syntactic elements of FVAE?

Let’s learn the Church encodings!

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 13 / 20

Lambda Calculus
What is the minimal language that can express all the syntactic elements
of FVAE? Lambda calculus (LC)!

The lambda calculus (LC) is a language only consisting of 1) variables,
2) functions, and 3) applications:

Expressions e ::= x
| λx.e
| e(e)

We already showed that the variable definition can be desugared to a
combination of a function definition and an application:

DJval x = e1; e2K = (λx.DJe2K)(DJe1K)

Then, how can we desugar other syntactic elements of FVAE?

Let’s learn the Church encodings!
COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 13 / 20

Church Encodings – Church Numerals
Church encodings are ways to encode data and operations in the
lambda calculus (LC).

For example, Church numerals are a way to encode natural numbers in
the lambda calculus (LC).

The key idea is to encode a natural number n as a function that takes
another function f and an argument x and applies f to x n times:

DJ0K = λf.λx.x
DJ1K = λf.λx.f(x)
DJ2K = λf.λx.f(f(x))
DJ3K = λf.λx.f(f(f(x)))

...

DJe1 + e2K = λf.λx.DJe1K(f)(DJe2K(f)(x))
DJe1 * e2K = λf.λx.DJe1K(DJe2K(f))(x)

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 14 / 20

Church Encodings – Church Numerals
Church encodings are ways to encode data and operations in the
lambda calculus (LC).

For example, Church numerals are a way to encode natural numbers in
the lambda calculus (LC).

The key idea is to encode a natural number n as a function that takes
another function f and an argument x and applies f to x n times:

DJ0K = λf.λx.x
DJ1K = λf.λx.f(x)
DJ2K = λf.λx.f(f(x))
DJ3K = λf.λx.f(f(f(x)))

...

DJe1 + e2K = λf.λx.DJe1K(f)(DJe2K(f)(x))
DJe1 * e2K = λf.λx.DJe1K(DJe2K(f))(x)

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 14 / 20

Church Encodings – Church Numerals
Church encodings are ways to encode data and operations in the
lambda calculus (LC).

For example, Church numerals are a way to encode natural numbers in
the lambda calculus (LC).

The key idea is to encode a natural number n as a function that takes
another function f and an argument x and applies f to x n times:

DJ0K = λf.λx.x
DJ1K = λf.λx.f(x)
DJ2K = λf.λx.f(f(x))
DJ3K = λf.λx.f(f(f(x)))

...

DJe1 + e2K = λf.λx.DJe1K(f)(DJe2K(f)(x))
DJe1 * e2K = λf.λx.DJe1K(DJe2K(f))(x)

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 14 / 20

Church Encodings – Church Numerals
For example,

DJ1 + 1K = λf.λx.DJ1K(f)(DJ1K(f)(x))
= λf.λx.(λf.λx.f(x))(f)((λf.λx.f(x))(f)(x))
= λf.λx.f((λf.λx.f(x))(f)(x))
= λf.λx.f(f(x))
= DJ2K

We can represent other data or operations in the LC using Church
encodings, such as integers, booleans, pairs, lists, and so on.2

Let’s see one more example of Church encoding for booleans and
logical operations (i.e., Church booleans).

2https://en.wikipedia.org/wiki/Church_encoding
COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 15 / 20

https://en.wikipedia.org/wiki/Church_encoding

Church Encodings – Church Numerals
For example,

DJ1 + 1K = λf.λx.DJ1K(f)(DJ1K(f)(x))
= λf.λx.(λf.λx.f(x))(f)((λf.λx.f(x))(f)(x))
= λf.λx.f((λf.λx.f(x))(f)(x))
= λf.λx.f(f(x))
= DJ2K

We can represent other data or operations in the LC using Church
encodings, such as integers, booleans, pairs, lists, and so on.2

Let’s see one more example of Church encoding for booleans and
logical operations (i.e., Church booleans).

2https://en.wikipedia.org/wiki/Church_encoding
COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 15 / 20

https://en.wikipedia.org/wiki/Church_encoding

Church Encodings – Church Numerals
For example,

DJ1 + 1K = λf.λx.DJ1K(f)(DJ1K(f)(x))
= λf.λx.(λf.λx.f(x))(f)((λf.λx.f(x))(f)(x))
= λf.λx.f((λf.λx.f(x))(f)(x))
= λf.λx.f(f(x))
= DJ2K

We can represent other data or operations in the LC using Church
encodings, such as integers, booleans, pairs, lists, and so on.2

Let’s see one more example of Church encoding for booleans and
logical operations (i.e., Church booleans).

2https://en.wikipedia.org/wiki/Church_encoding
COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 15 / 20

https://en.wikipedia.org/wiki/Church_encoding

Church Encodings – Church Booleans
The key idea is to encode a boolean b as a function that takes two
arguments t and f and applies t if b is true or f if b is false:

DJtrueK = λt.λf.t DJif(e1) e2 else e3K = DJe1K(DJe2K)(DJe3K)
DJfalseK = λt.λf.f DJe1 && e2K = DJe1K(DJe2K)(DJe1K)

DJe1 || e2K = DJe1K(DJe1K)(DJe2K)
DJ! eK = λt.λf.DJeK(f)(t)

For example,

DJtrue && falseK = DJtrueK(DJfalseK)(DJtrueK)
= (λt.λf.t)(DJfalseK)(DJtrueK)
= DJfalseK

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 16 / 20

Church Encodings – Church Booleans
The key idea is to encode a boolean b as a function that takes two
arguments t and f and applies t if b is true or f if b is false:

DJtrueK = λt.λf.t DJif(e1) e2 else e3K = DJe1K(DJe2K)(DJe3K)
DJfalseK = λt.λf.f DJe1 && e2K = DJe1K(DJe2K)(DJe1K)

DJe1 || e2K = DJe1K(DJe1K)(DJe2K)
DJ! eK = λt.λf.DJeK(f)(t)

For example,

DJtrue && falseK = DJtrueK(DJfalseK)(DJtrueK)
= (λt.λf.t)(DJfalseK)(DJtrueK)
= DJfalseK

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 16 / 20

Church-Turing Thesis
Alonzo Church invented lambda calculus in 1930s, and it
became the foundation of programming languages:

e ::= x | λx.e | e(e)

Alan Turing invented Turing machines (TM) in 1936, and
it became the foundation of computers:

Church-Turing Thesis: Lambda Calculus is Turing complete.

Any real-world computation can be translated into an equivalent
computation involving a Turing machine or can be done using
lambda calculus.

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 17 / 20

Homework #2

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/cobalt

• Please see above document on GitHub:
1 Implement interp function.
2 Implement subExpr1 and subExpr2 functions.

• The due date is 23:59 on Oct. 14 (Mon.).

• Please only submit Implementation.scala file to Blackboard.

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 18 / 20

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/cobalt
https://kulms.korea.ac.kr/

Summary

1. Syntactic Sugar
No More val
FAE – Removing val from FVAE
Syntactic Sugar and Desugaring

2. Lambda Calculus
Definition
Church Encodings
Church-Turing Thesis

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 19 / 20

Next Lecture
• Recursive Functions

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 8 – Lambda Calculus September 30, 2024 20 / 20

https://plrg.korea.ac.kr

	Syntactic Sugar
	No More val
	FAE – Removing val from FVAE
	Syntactic Sugar and Desugaring

	Lambda Calculus
	Definition
	Church Encodings
	Church-Turing Thesis

