
Lecture 9 – Recursive Functions
COSE212: Programming Languages

Jihyeok Park

2024 Fall

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 1 / 39

Recall
• Syntactic Sugar

• FAE – Removing val from FVAE
• Syntactic Sugar and Desugaring

• Lambda Calculus (LC)
• Church Encodings
• Church-Turing Thesis

• In this lecture, we will learn recursion and conditionals.

• RFAE – FAE with recursive functions
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 2 / 39

Recall
• Syntactic Sugar

• FAE – Removing val from FVAE
• Syntactic Sugar and Desugaring

• Lambda Calculus (LC)
• Church Encodings
• Church-Turing Thesis

• In this lecture, we will learn recursion and conditionals.

• RFAE – FAE with recursive functions
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 2 / 39

Recall
• Syntactic Sugar

• FAE – Removing val from FVAE
• Syntactic Sugar and Desugaring

• Lambda Calculus (LC)
• Church Encodings
• Church-Turing Thesis

• In this lecture, we will learn recursion and conditionals.

• RFAE – FAE with recursive functions
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 2 / 39

Contents

1. Recursion and Conditionals
Recursion in F1VAE
Recursion in FAE

2. Recursion without New Syntax in FAE
mkRec: Helper Function for Recursion

3. RFAE – FAE with Recursion and Conditionals
Concrete Syntax
Abstract Syntax

4. Interpreter and Natural Semantics for RFAE
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 3 / 39

Contents

1. Recursion and Conditionals
Recursion in F1VAE
Recursion in FAE

2. Recursion without New Syntax in FAE
mkRec: Helper Function for Recursion

3. RFAE – FAE with Recursion and Conditionals
Concrete Syntax
Abstract Syntax

4. Interpreter and Natural Semantics for RFAE
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 4 / 39

Recursion and Conditionals
A recursive function is a function that calls itself, and it is useful for
iterative processes on inductive data structures.

Let’s define a recursive function sum that computes the sum of integers
from 1 to n in Scala:

/* Scala */
def sum(n: Int): Int =

if (n < 1) 0 // base case
else n + sum(n - 1) // recursive case

sum(10) // 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 55

For recursive functions, we need conditionals to define 1) base cases and
2) recursive cases.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 5 / 39

Recursion and Conditionals
A recursive function is a function that calls itself, and it is useful for
iterative processes on inductive data structures.

Let’s define a recursive function sum that computes the sum of integers
from 1 to n in Scala:

/* Scala */
def sum(n: Int): Int =

if (n < 1) 0 // base case
else n + sum(n - 1) // recursive case

sum(10) // 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 55

For recursive functions, we need conditionals to define 1) base cases and
2) recursive cases.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 5 / 39

Recursion and Conditionals
A recursive function is a function that calls itself, and it is useful for
iterative processes on inductive data structures.

Let’s define a recursive function sum that computes the sum of integers
from 1 to n in Scala:

/* Scala */
def sum(n: Int): Int =

if (n < 1) 0 // base case
else n + sum(n - 1) // recursive case

sum(10) // 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 55

For recursive functions, we need conditionals to define 1) base cases and
2) recursive cases.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 5 / 39

Recursion and Conditionals
Most programming languages support recursive functions:

• Scala

def sum(n: Int): Int = if (n < 1) 0 else n + sum(n - 1)

• C++

int sum(int n) { return n < 1 ? 0 : n + sum(n - 1); }

• Python

def sum(n): return 0 if n < 1 else n + sum(n - 1)

• Rust

fn sum(n: i32) -> i32 { if n < 1 {0} else {n + sum(n-1)} }

• . . .

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 6 / 39

Recursion in F1VAE
The F1VAE language already supports recursive functions:

/* F1VAE */
def sum(n) = n + sum(n + -1);
sum(10)

Why?

The function environment Λ stores all the function definitions
before evaluating the expressions.

Λ = [sum 7→ def sum(n) = n + sum(n + -1)]

We can lookup and invoke the function sum in its body.

However, is it enough to support recursive functions?

No! We need conditionals to define 1) base cases and 2) recursive
cases for recursive functions. The above example causes an infinite loop.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 7 / 39

Recursion in F1VAE
The F1VAE language already supports recursive functions:

/* F1VAE */
def sum(n) = n + sum(n + -1);
sum(10)

Why? The function environment Λ stores all the function definitions
before evaluating the expressions.

Λ = [sum 7→ def sum(n) = n + sum(n + -1)]

We can lookup and invoke the function sum in its body.

However, is it enough to support recursive functions?

No! We need conditionals to define 1) base cases and 2) recursive
cases for recursive functions. The above example causes an infinite loop.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 7 / 39

Recursion in F1VAE
The F1VAE language already supports recursive functions:

/* F1VAE */
def sum(n) = n + sum(n + -1);
sum(10)

Why? The function environment Λ stores all the function definitions
before evaluating the expressions.

Λ = [sum 7→ def sum(n) = n + sum(n + -1)]

We can lookup and invoke the function sum in its body.

However, is it enough to support recursive functions?

No! We need conditionals to define 1) base cases and 2) recursive
cases for recursive functions. The above example causes an infinite loop.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 7 / 39

Recursion in F1VAE
The F1VAE language already supports recursive functions:

/* F1VAE */
def sum(n) = n + sum(n + -1);
sum(10)

Why? The function environment Λ stores all the function definitions
before evaluating the expressions.

Λ = [sum 7→ def sum(n) = n + sum(n + -1)]

We can lookup and invoke the function sum in its body.

However, is it enough to support recursive functions?

No! We need conditionals to define 1) base cases and 2) recursive
cases for recursive functions. The above example causes an infinite loop.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 7 / 39

Recursion in F1VAE
If we only add conditionals to F1VAE, we can define recursive functions
in F1VAE without any more extensions for recursion.

Programs P ∋ p ::= f∗ e (Program)
Function Definitions F ∋ f ::= def x(x) = e (FunDef)
Expressions E ∋ e ::= . . .

| e < e (Lt)
| if (e) e else e (If)

Values V ∋ v ::= n | b

Function Environments Λ ∈ X fin−→ F (FEnv)
Boolean b ∈ B = {true, false} (Boolean)

/* F1VAE + conditionals */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

Λ = [sum 7→ def sum(n) = if (n < 1) 0 else n + sum(n + -1)]

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 8 / 39

Recursion in FAE

/* FAE + conditionals */
val sum = n => {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10)

What happens if we add conditionals to FAE? Is the following FAE
expression a recursive function?

No! sum is a free identifier! Why?

We use static scoping for function definitions in FAE. At the definition
site, the variable sum is not defined in the environment.

Then, how to support recursive functions in FAE? There are two ways:
1 Without new syntax – using mkRec to define recursive functions
2 With new syntax – extending FAE with recursive function definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 9 / 39

Recursion in FAE

/* FAE + conditionals */
val sum = n => {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10)

What happens if we add conditionals to FAE? Is the following FAE
expression a recursive function? No! sum is a free identifier! Why?

We use static scoping for function definitions in FAE. At the definition
site, the variable sum is not defined in the environment.

Then, how to support recursive functions in FAE? There are two ways:
1 Without new syntax – using mkRec to define recursive functions
2 With new syntax – extending FAE with recursive function definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 9 / 39

Recursion in FAE

/* FAE + conditionals */
val sum = n => {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10)

What happens if we add conditionals to FAE? Is the following FAE
expression a recursive function? No! sum is a free identifier! Why?

We use static scoping for function definitions in FAE. At the definition
site, the variable sum is not defined in the environment.

Then, how to support recursive functions in FAE? There are two ways:
1 Without new syntax – using mkRec to define recursive functions
2 With new syntax – extending FAE with recursive function definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 9 / 39

Recursion in FAE

/* FAE + conditionals */
val sum = n => {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10)

What happens if we add conditionals to FAE? Is the following FAE
expression a recursive function? No! sum is a free identifier! Why?

We use static scoping for function definitions in FAE. At the definition
site, the variable sum is not defined in the environment.

Then, how to support recursive functions in FAE? There are two ways:
1 Without new syntax – using mkRec to define recursive functions
2 With new syntax – extending FAE with recursive function definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 9 / 39

Contents

1. Recursion and Conditionals
Recursion in F1VAE
Recursion in FAE

2. Recursion without New Syntax in FAE
mkRec: Helper Function for Recursion

3. RFAE – FAE with Recursion and Conditionals
Concrete Syntax
Abstract Syntax

4. Interpreter and Natural Semantics for RFAE
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 10 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = n => {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10)

How to let sum know itself in its body?

Let’s pass the function as an argument to itself!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 11 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = n => {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10)

How to let sum know itself in its body?

Let’s pass the function as an argument to itself!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 11 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sumX = sumY => {

n => {
if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)(10)

However, it is annoying to always pass the function to itself!

Let’s wrap this to get sum back!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 12 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sumX = sumY => {

n => {
if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)(10)

However, it is annoying to always pass the function to itself!

Let’s wrap this to get sum back!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 12 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sumX = sumY => {

n => {
if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)(10)

However, it is annoying to always pass the function to itself!

Let’s wrap this to get sum back!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 12 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = n => {

val sumX = sumY => {
n => {

if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)(n)

};
sum(10)

We can simplify this using η-reduction1:

e ≡ λx.e(x) only if x is NOT FREE in e.

1https://en.wikipedia.org/wiki/Lambda_calculus#%CE%B7-reduction
COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 13 / 39

https://en.wikipedia.org/wiki/Lambda_calculus#%CE%B7-reduction

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = n => {

val sumX = sumY => {
n => {

if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)(n)

};
sum(10)

We can simplify this using η-reduction1:

e ≡ λx.e(x) only if x is NOT FREE in e.

1https://en.wikipedia.org/wiki/Lambda_calculus#%CE%B7-reduction
COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 13 / 39

https://en.wikipedia.org/wiki/Lambda_calculus#%CE%B7-reduction

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
n => { // ALMOST the same as the original body

if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)

};
sum(10)

The function body is almost the same as the original version except that
we need to call the function as sumY(sumY) instead of sum.

Let’s define a variable sum to be sumY(sumY)!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 14 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
n => { // ALMOST the same as the original body

if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)

};
sum(10)

The function body is almost the same as the original version except that
we need to call the function as sumY(sumY) instead of sum.

Let’s define a variable sum to be sumY(sumY)!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 14 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
n => { // ALMOST the same as the original body

if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)

};
sum(10)

The function body is almost the same as the original version except that
we need to call the function as sumY(sumY) instead of sum.

Let’s define a variable sum to be sumY(sumY)!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 14 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = sumY(sumY);
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 15 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = sumY(sumY); // INFINITE LOOP
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)

Unfortunately, this is an infinite loop!

We need to delay the evaluation of sum using the η-expansion:

e ≡ λx.e(x) only if x is NOT FREE in e.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 16 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = sumY(sumY); // INFINITE LOOP
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)

Unfortunately, this is an infinite loop!

We need to delay the evaluation of sum using the η-expansion:

e ≡ λx.e(x) only if x is NOT FREE in e.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 16 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = x => sumY(sumY)(x);
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)

Do we need to do this for every recursive function?

To avoid such boilerplate code, let’s define a helper function mkRec!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 17 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = x => sumY(sumY)(x);
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)

Do we need to do this for every recursive function?

To avoid such boilerplate code, let’s define a helper function mkRec!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 17 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = x => sumY(sumY)(x);
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)

Do we need to do this for every recursive function?

To avoid such boilerplate code, let’s define a helper function mkRec!

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 17 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val fX = fY => {
val sum = x => fY(fY)(x);
n => {

if (n < 1) 0
else n + sum(n + -1)

}
};
fX(fX)

};
sum(10)

First, we rename sumX and sumY to fX and fY, respectively.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 18 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val fX = fY => {
val sum = x => fY(fY)(x);
n => {

if (n < 1) 0
else n + sum(n + -1)

}
};
fX(fX)

};
sum(10)

Then, let’s desugar the inside variable definition sum.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 19 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val fX = fY => {
(sum => n => {

if (n < 1) 0
else n + sum(n + -1)

})(x => fY(fY)(x))
};
fX(fX)

};
sum(10)

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 20 / 39

Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val fX = fY => {
(sum => n => {

if (n < 1) 0
else n + sum(n + -1)

})(x => fY(fY)(x))
};
fX(fX)

};
sum(10)

Finally, let’s define a helper function mkRec that takes a body of a
recursive function and returns a recursive function.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 21 / 39

mkRec: Helper Function for Recursion
/* FAE + conditionals */
val mkRec = body => {

val fX = fY => body(x => fY(fY)(x))
fX(fX)

};
val sum = mkRec(sum => n => {

if (n < 1) 0
else n + sum(n + -1)

});
sum(10)

Now, we can also define other recursive functions using mkRec2. For
example, the following recursive function fac computes the factorial:

/* FAE + conditionals */
val mkRec = ...;
val fac = mkRec(fac => n => if (n < 1) 1 else n * fac(n + -1));
fac(5) // 5 * 4 * 3 * 2 * 1 = 120

2https://en.wikipedia.org/wiki/Fixed-point_combinator
COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 22 / 39

https://en.wikipedia.org/wiki/Fixed-point_combinator

mkRec: Helper Function for Recursion
/* FAE + conditionals */
val mkRec = body => {

val fX = fY => body(x => fY(fY)(x))
fX(fX)

};
val sum = mkRec(sum => n => {

if (n < 1) 0
else n + sum(n + -1)

});
sum(10)

Now, we can also define other recursive functions using mkRec2.

For
example, the following recursive function fac computes the factorial:

/* FAE + conditionals */
val mkRec = ...;
val fac = mkRec(fac => n => if (n < 1) 1 else n * fac(n + -1));
fac(5) // 5 * 4 * 3 * 2 * 1 = 120

2https://en.wikipedia.org/wiki/Fixed-point_combinator
COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 22 / 39

https://en.wikipedia.org/wiki/Fixed-point_combinator

mkRec: Helper Function for Recursion
/* FAE + conditionals */
val mkRec = body => {

val fX = fY => body(x => fY(fY)(x))
fX(fX)

};
val sum = mkRec(sum => n => {

if (n < 1) 0
else n + sum(n + -1)

});
sum(10)

Now, we can also define other recursive functions using mkRec2. For
example, the following recursive function fac computes the factorial:

/* FAE + conditionals */
val mkRec = ...;
val fac = mkRec(fac => n => if (n < 1) 1 else n * fac(n + -1));
fac(5) // 5 * 4 * 3 * 2 * 1 = 120

2https://en.wikipedia.org/wiki/Fixed-point_combinator
COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 22 / 39

https://en.wikipedia.org/wiki/Fixed-point_combinator

Contents

1. Recursion and Conditionals
Recursion in F1VAE
Recursion in FAE

2. Recursion without New Syntax in FAE
mkRec: Helper Function for Recursion

3. RFAE – FAE with Recursion and Conditionals
Concrete Syntax
Abstract Syntax

4. Interpreter and Natural Semantics for RFAE
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 23 / 39

RFAE – FAE with Recursion and Conditionals
The second way to support recursive functions in FAE is to extend FAE
with recursive function definitions.

RFAE is an extension of FAE with recursion and conditionals.

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

For RFAE, we need to extend expressions of FAE with

1 arithmetic comparison operators

2 conditionals

3 recursive function definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 24 / 39

RFAE – FAE with Recursion and Conditionals
The second way to support recursive functions in FAE is to extend FAE
with recursive function definitions.

RFAE is an extension of FAE with recursion and conditionals.

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

For RFAE, we need to extend expressions of FAE with

1 arithmetic comparison operators

2 conditionals

3 recursive function definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 24 / 39

RFAE – FAE with Recursion and Conditionals
The second way to support recursive functions in FAE is to extend FAE
with recursive function definitions.

RFAE is an extension of FAE with recursion and conditionals.

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

For RFAE, we need to extend expressions of FAE with

1 arithmetic comparison operators

2 conditionals

3 recursive function definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 24 / 39

RFAE – FAE with Recursion and Conditionals
/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

A recursive function definition consists of four parts:
• a function name
• a parameter name
• a function body expression
• a scope expression

Note that a recursive function definition is also an expression can be
used in any place where an expression is expected:

/* RFAE */
2 * {

def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

} + 1 // 2 * 55 + 1 = 111

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 25 / 39

RFAE – FAE with Recursion and Conditionals
/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

A recursive function definition consists of four parts:
• a function name
• a parameter name
• a function body expression
• a scope expression

Note that a recursive function definition is also an expression can be
used in any place where an expression is expected:

/* RFAE */
2 * {

def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

} + 1 // 2 * 55 + 1 = 111

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 25 / 39

Concrete Syntax

// expressions
<expr> ::= ...

| <expr> "<" <expr>
| "if" "(" <expr> ")" <expr> "else" <expr>
| "def" <id> "(" <id> ")" "=" <expr> ";" <expr>

For RFAE, we need to extend expressions of FAE with

1 arithmetic comparison operators

2 conditionals

3 recursive function definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 26 / 39

Abstract Syntax
Let’s define the abstract syntax of RFAE in BNF:

Expressions E ∋ e ::= . . .
| e < e (Lt)
| if (e) e else e (If)
| def x(x) = e; e (Rec)

enum Expr:
...
// less-than
case Lt(left: Expr, right: Expr)
// conditionals
case If(cond: Expr, thenExpr: Expr, elseExpr: Expr)
// recursive function definition
case Rec(name: String, param: String, body: Expr, scope: Expr)

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 27 / 39

Abstract Syntax
Let’s define the abstract syntax of RFAE in BNF:

Expressions E ∋ e ::= . . .
| e < e (Lt)
| if (e) e else e (If)
| def x(x) = e; e (Rec)

enum Expr:
...
// less-than
case Lt(left: Expr, right: Expr)
// conditionals
case If(cond: Expr, thenExpr: Expr, elseExpr: Expr)
// recursive function definition
case Rec(name: String, param: String, body: Expr, scope: Expr)

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 27 / 39

Contents

1. Recursion and Conditionals
Recursion in F1VAE
Recursion in FAE

2. Recursion without New Syntax in FAE
mkRec: Helper Function for Recursion

3. RFAE – FAE with Recursion and Conditionals
Concrete Syntax
Abstract Syntax

4. Interpreter and Natural Semantics for RFAE
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 28 / 39

Interpreter and Natural Semantics
Now, let’s 1) implement the interpreter:

def interp(expr: Expr, env: Env): Value = ???

and 2) define the natural semantics for recursive function definitions
and other new cases.

σ ⊢ e ⇒ v

Expressions E ∋ e ::= . . .
| e < e (Lt)
| if (e) e else e (If)
| def x(x) = e; e (Rec)

Values V ∋ v ::= n | b | ⟨λx.e, σ⟩

enum Value:
case NumV(number: BigInt)
case BoolV(bool: Boolean)
case CloV(param: String, body: Expr, env: Env)

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 29 / 39

Arithmetic Comparison Operators

type BOp[T] = (T, T) => T
type COp[T] = (T, T) => Boolean
def numCOp(op: COp[BigInt], x: String): BOp[Value] =

case (NumV(l), NumV(r)) => BoolV(op(l, r))
case (l, r) => error(s"invalid operation: ${l.str} $x ${r.str}")

val numLt: BOp[Value] = numCOp(_ < _, "<")

def interp(expr: Expr, env: Env): Value = expr match
...
case Lt(l, r) => numLt(interp(l, env), interp(r, env))

σ ⊢ e ⇒ v

Lt
σ ⊢ e1 ⇒ n1 σ ⊢ e2 ⇒ n2

σ ⊢ e1 < e2 ⇒ n1 < n2

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 30 / 39

Conditionals

def interp(expr: Expr, env: Env): Value = expr match
...
case If(c, t, e) => interp(c, env) match

case BoolV(true) => interp(t, env)
case BoolV(false) => interp(e, env)
case v => error(s"not a boolean: ${v.str}")

σ ⊢ e ⇒ v

IfT

σ ⊢ e0 ⇒ true σ ⊢ e1 ⇒ v1

σ ⊢ if (e0) e1 else e2 ⇒ v1

IfF

σ ⊢ e0 ⇒ false σ ⊢ e2 ⇒ v2

σ ⊢ if (e0) e1 else e2 ⇒ v2

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 31 / 39

Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

val newEnv: Env = ???
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = ??? σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 32 / 39

Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

val newEnv: Env = env + (n -> CloV(p, b, ???))
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = σ[x0 7→ ⟨λx1.e2, ???⟩] σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 33 / 39

Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

val newEnv: Env = env + (n -> CloV(p, b, newEnv)) // not working
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = σ[x0 7→ ⟨λx1.e2, σ′⟩] σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3

While it makes sense in the natural semantics, the above Scala code
doesn’t work because newEnv is not yet defined.

Let’s delay the evaluation of newEnv using the η-expansion again:

e ≡ λx.e(x) only if x is NOT FREE in e.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 34 / 39

Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

val newEnv: Env = env + (n -> CloV(p, b, newEnv)) // not working
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = σ[x0 7→ ⟨λx1.e2, σ′⟩] σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3

While it makes sense in the natural semantics, the above Scala code
doesn’t work because newEnv is not yet defined.

Let’s delay the evaluation of newEnv using the η-expansion again:

e ≡ λx.e(x) only if x is NOT FREE in e.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 34 / 39

Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

val newEnv: Env = env + (n -> CloV(p, b, newEnv)) // not working
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = σ[x0 7→ ⟨λx1.e2, σ′⟩] σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3

While it makes sense in the natural semantics, the above Scala code
doesn’t work because newEnv is not yet defined.

Let’s delay the evaluation of newEnv using the η-expansion again:

e ≡ λx.e(x) only if x is NOT FREE in e.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 34 / 39

Recursive Function Definitions
We augment the closure value with an environment factory
(() => Env) rather than an environment (Env):

enum Value:
...
case CloV(param: String, body: Expr, env: () => Env)

def interp(expr: Expr, env: Env): Value = expr match
...
case Func(p, b) => CloV(p, b, () => env)
case App(f, e) => interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv() + (p -> interp(e, env)))
case v => error(s"not a function: ${v.str}")

case Rec(n, p, b, s) =>
val newEnv: Env = env + (n -> CloV(p, b, () => newEnv)) // error
interp(s, newEnv)

It sill doesn’t work because newEnv is not yet defined.

Let’s use a lazy value (lazy val) to delay the evaluation of newEnv.
COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 35 / 39

Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

lazy val newEnv: Env = env + (n -> CloV(p, b, () => newEnv))
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = σ[x0 7→ ⟨λx1.e2, σ′⟩] σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3

We will learn more about lazy values in the later lectures in this course.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 36 / 39

Exercise #5

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/rfae

• Please see above document on GitHub:
• Implement interp function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 37 / 39

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/rfae

Summary

1. Recursion and Conditionals
Recursion in F1VAE
Recursion in FAE

2. Recursion without New Syntax in FAE
mkRec: Helper Function for Recursion

3. RFAE – FAE with Recursion and Conditionals
Concrete Syntax
Abstract Syntax

4. Interpreter and Natural Semantics for RFAE
Interpreter and Natural Semantics
Arithmetic Comparison Operators
Conditionals
Recursive Function Definitions

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 38 / 39

Next Lecture
• Mutable Data Structures

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 9 – Recursive Functions October 2, 2024 39 / 39

https://plrg.korea.ac.kr

	Recursion and Conditionals
	Recursion in F1VAE
	Recursion in FAE

	Recursion without New Syntax in FAE
	mkRec: Helper Function for Recursion

	RFAE – FAE with Recursion and Conditionals
	Concrete Syntax
	Abstract Syntax

	Interpreter and Natural Semantics for RFAE
	Interpreter and Natural Semantics
	Arithmetic Comparison Operators
	Conditionals
	Recursive Function Definitions

