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Recall
• Syntactic Sugar

• FAE – Removing val from FVAE
• Syntactic Sugar and Desugaring

• Lambda Calculus (LC)
• Church Encodings
• Church-Turing Thesis

• In this lecture, we will learn recursion and conditionals.

• RFAE – FAE with recursive functions
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics
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Recursion and Conditionals
A recursive function is a function that calls itself, and it is useful for
iterative processes on inductive data structures.

Let’s define a recursive function sum that computes the sum of integers
from 1 to n in Scala:

/* Scala */
def sum(n: Int): Int =

if (n < 1) 0 // base case
else n + sum(n - 1) // recursive case

sum(10) // 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 55

For recursive functions, we need conditionals to define 1) base cases and
2) recursive cases.
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Recursion and Conditionals
Most programming languages support recursive functions:

• Scala

def sum(n: Int): Int = if (n < 1) 0 else n + sum(n - 1)

• C++

int sum(int n) { return n < 1 ? 0 : n + sum(n - 1); }

• Python

def sum(n): return 0 if n < 1 else n + sum(n - 1)

• Rust

fn sum(n: i32) -> i32 { if n < 1 {0} else {n + sum(n-1)} }

• . . .
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Recursion in F1VAE
The F1VAE language already supports recursive functions:

/* F1VAE */
def sum(n) = n + sum(n + -1);
sum(10)

Why?

The function environment Λ stores all the function definitions
before evaluating the expressions.

Λ = [sum 7→ def sum(n) = n + sum(n + -1)]

We can lookup and invoke the function sum in its body.

However, is it enough to support recursive functions?

No! We need conditionals to define 1) base cases and 2) recursive
cases for recursive functions. The above example causes an infinite loop.
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Recursion in F1VAE
If we only add conditionals to F1VAE, we can define recursive functions
in F1VAE without any more extensions for recursion.

Programs P ∋ p ::= f∗ e (Program)
Function Definitions F ∋ f ::= def x(x) = e (FunDef)
Expressions E ∋ e ::= . . .

| e < e (Lt)
| if (e) e else e (If)

Values V ∋ v ::= n | b

Function Environments Λ ∈ X fin−→ F (FEnv)
Boolean b ∈ B = {true, false} (Boolean)

/* F1VAE + conditionals */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

Λ = [sum 7→ def sum(n) = if (n < 1) 0 else n + sum(n + -1)]
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Recursion in FAE

/* FAE + conditionals */
val sum = n => {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10)

What happens if we add conditionals to FAE? Is the following FAE
expression a recursive function?

No! sum is a free identifier! Why?

We use static scoping for function definitions in FAE. At the definition
site, the variable sum is not defined in the environment.

Then, how to support recursive functions in FAE? There are two ways:
1 Without new syntax – using mkRec to define recursive functions
2 With new syntax – extending FAE with recursive function definitions
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = n => {

if (n < 1) 0
else n + sum(n + -1)

};
sum(10)

How to let sum know itself in its body?

Let’s pass the function as an argument to itself!
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sumX = sumY => {

n => {
if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)(10)

However, it is annoying to always pass the function to itself!

Let’s wrap this to get sum back!
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = n => {

val sumX = sumY => {
n => {

if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)(n)

};
sum(10)

We can simplify this using η-reduction1:

e ≡ λx.e(x) only if x is NOT FREE in e.

1https://en.wikipedia.org/wiki/Lambda_calculus#%CE%B7-reduction
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
n => { // ALMOST the same as the original body

if (n < 1) 0
else n + sumY(sumY)(n + -1)

}
};
sumX(sumX)

};
sum(10)

The function body is almost the same as the original version except that
we need to call the function as sumY(sumY) instead of sum.

Let’s define a variable sum to be sumY(sumY)!
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = sumY(sumY);
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = sumY(sumY); // INFINITE LOOP
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)

Unfortunately, this is an infinite loop!

We need to delay the evaluation of sum using the η-expansion:

e ≡ λx.e(x) only if x is NOT FREE in e.
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val sumX = sumY => {
val sum = x => sumY(sumY)(x);
n => { // EXACTLY the same as the original body

if (n < 1) 0
else n + sum(n + -1)

}
};
sumX(sumX)

};
sum(10)

Do we need to do this for every recursive function?

To avoid such boilerplate code, let’s define a helper function mkRec!
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val fX = fY => {
val sum = x => fY(fY)(x);
n => {

if (n < 1) 0
else n + sum(n + -1)

}
};
fX(fX)

};
sum(10)

First, we rename sumX and sumY to fX and fY, respectively.
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val fX = fY => {
val sum = x => fY(fY)(x);
n => {

if (n < 1) 0
else n + sum(n + -1)

}
};
fX(fX)

};
sum(10)

Then, let’s desugar the inside variable definition sum.
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val fX = fY => {
(sum => n => {

if (n < 1) 0
else n + sum(n + -1)

})(x => fY(fY)(x))
};
fX(fX)

};
sum(10)
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Recursion without New Syntax in FAE

/* FAE + conditionals */
val sum = {

val fX = fY => {
(sum => n => {

if (n < 1) 0
else n + sum(n + -1)

})(x => fY(fY)(x))
};
fX(fX)

};
sum(10)

Finally, let’s define a helper function mkRec that takes a body of a
recursive function and returns a recursive function.
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mkRec: Helper Function for Recursion
/* FAE + conditionals */
val mkRec = body => {

val fX = fY => body(x => fY(fY)(x))
fX(fX)

};
val sum = mkRec(sum => n => {

if (n < 1) 0
else n + sum(n + -1)

});
sum(10)

Now, we can also define other recursive functions using mkRec2. For
example, the following recursive function fac computes the factorial:

/* FAE + conditionals */
val mkRec = ...;
val fac = mkRec(fac => n => if (n < 1) 1 else n * fac(n + -1));
fac(5) // 5 * 4 * 3 * 2 * 1 = 120

2https://en.wikipedia.org/wiki/Fixed-point_combinator
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RFAE – FAE with Recursion and Conditionals
The second way to support recursive functions in FAE is to extend FAE
with recursive function definitions.

RFAE is an extension of FAE with recursion and conditionals.

/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

For RFAE, we need to extend expressions of FAE with

1 arithmetic comparison operators

2 conditionals

3 recursive function definitions
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RFAE – FAE with Recursion and Conditionals
/* RFAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

A recursive function definition consists of four parts:
• a function name
• a parameter name
• a function body expression
• a scope expression

Note that a recursive function definition is also an expression can be
used in any place where an expression is expected:

/* RFAE */
2 * {

def sum(n) = if (n < 1) 0 else n + sum(n + -1);
sum(10) // 55

} + 1 // 2 * 55 + 1 = 111
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Concrete Syntax

// expressions
<expr> ::= ...

| <expr> "<" <expr>
| "if" "(" <expr> ")" <expr> "else" <expr>
| "def" <id> "(" <id> ")" "=" <expr> ";" <expr>

For RFAE, we need to extend expressions of FAE with

1 arithmetic comparison operators

2 conditionals

3 recursive function definitions
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Abstract Syntax
Let’s define the abstract syntax of RFAE in BNF:

Expressions E ∋ e ::= . . .
| e < e (Lt)
| if (e) e else e (If)
| def x(x) = e; e (Rec)

enum Expr:
...
// less-than
case Lt(left: Expr, right: Expr)
// conditionals
case If(cond: Expr, thenExpr: Expr, elseExpr: Expr)
// recursive function definition
case Rec(name: String, param: String, body: Expr, scope: Expr)
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Interpreter and Natural Semantics
Now, let’s 1) implement the interpreter:

def interp(expr: Expr, env: Env): Value = ???

and 2) define the natural semantics for recursive function definitions
and other new cases.

σ ⊢ e ⇒ v

Expressions E ∋ e ::= . . .
| e < e (Lt)
| if (e) e else e (If)
| def x(x) = e; e (Rec)

Values V ∋ v ::= n | b | ⟨λx.e, σ⟩

enum Value:
case NumV(number: BigInt)
case BoolV(bool: Boolean)
case CloV(param: String, body: Expr, env: Env)
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Arithmetic Comparison Operators

type BOp[T] = (T, T) => T
type COp[T] = (T, T) => Boolean
def numCOp(op: COp[BigInt], x: String): BOp[Value] =

case (NumV(l), NumV(r)) => BoolV(op(l, r))
case (l, r) => error(s"invalid operation: ${l.str} $x ${r.str}")

val numLt: BOp[Value] = numCOp(_ < _, "<")

def interp(expr: Expr, env: Env): Value = expr match
...
case Lt(l, r) => numLt(interp(l, env), interp(r, env))

σ ⊢ e ⇒ v

Lt
σ ⊢ e1 ⇒ n1 σ ⊢ e2 ⇒ n2

σ ⊢ e1 < e2 ⇒ n1 < n2
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Conditionals

def interp(expr: Expr, env: Env): Value = expr match
...
case If(c, t, e) => interp(c, env) match

case BoolV(true) => interp(t, env)
case BoolV(false) => interp(e, env)
case v => error(s"not a boolean: ${v.str}")

σ ⊢ e ⇒ v

IfT

σ ⊢ e0 ⇒ true σ ⊢ e1 ⇒ v1

σ ⊢ if (e0) e1 else e2 ⇒ v1

IfF

σ ⊢ e0 ⇒ false σ ⊢ e2 ⇒ v2

σ ⊢ if (e0) e1 else e2 ⇒ v2
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Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

val newEnv: Env = ???
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = ??? σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3
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Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

val newEnv: Env = env + (n -> CloV(p, b, ???))
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = σ[x0 7→ ⟨λx1.e2, ???⟩] σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3
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Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

val newEnv: Env = env + (n -> CloV(p, b, newEnv)) // not working
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = σ[x0 7→ ⟨λx1.e2, σ′⟩] σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3

While it makes sense in the natural semantics, the above Scala code
doesn’t work because newEnv is not yet defined.

Let’s delay the evaluation of newEnv using the η-expansion again:

e ≡ λx.e(x) only if x is NOT FREE in e.
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Recursive Function Definitions
We augment the closure value with an environment factory
(() => Env) rather than an environment (Env):

enum Value:
...
case CloV(param: String, body: Expr, env: () => Env)

def interp(expr: Expr, env: Env): Value = expr match
...
case Func(p, b) => CloV(p, b, () => env)
case App(f, e) => interp(f, env) match

case CloV(p, b, fenv) => interp(b, fenv() + (p -> interp(e, env)))
case v => error(s"not a function: ${v.str}")

case Rec(n, p, b, s) =>
val newEnv: Env = env + (n -> CloV(p, b, () => newEnv)) // error
interp(s, newEnv)

It sill doesn’t work because newEnv is not yet defined.

Let’s use a lazy value (lazy val) to delay the evaluation of newEnv.
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Recursive Function Definitions

def interp(expr: Expr, env: Env): Value = expr match
...
case Rec(n, p, b, s) =>

lazy val newEnv: Env = env + (n -> CloV(p, b, () => newEnv))
interp(s, newEnv)

σ ⊢ e ⇒ v

Rec
σ′ = σ[x0 7→ ⟨λx1.e2, σ′⟩] σ′ ⊢ e3 ⇒ v3

σ ⊢ def x0(x1) = e2; e3 ⇒ v3

We will learn more about lazy values in the later lectures in this course.
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Exercise #5

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/rfae

• Please see above document on GitHub:
• Implement interp function.

• It is just an exercise, and you don’t need to submit anything.
• However, some exam questions might be related to this exercise.
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• Mutable Data Structures
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