Midterm Exam
COSE212: Programming Languages
2025 Fall

Instructor: Jihyeok Park

October 22, 2025. 18:30-21:00

If you are not good at English, please write your answers in Korean.
(Gol7} ol&ald e AL, Pets f2z 24e) 248

Write answers in good handwriting.
If we cannot recognize your answers, you will not get any points.
(BHE goti7] =W M5 B 4 glsynh gets ¢7] 34 28418

Write your answers in the boxes provided.
(Fehe AT v <bef] 2 A48

There are 10 pages and 11 questions.
A2 10 ez F 11 AR #4450 JF4T)

Syntax and Semantics of Languages are given in Appendix.
(hofo] Eoiat ojulis R2ol 4 2 4 &Y th)

Student ID

Student Name

Question: 1 2 3 4) 6 7 8 9 10 11

Total

Points: 10 10 5 10 10 5 10 10 10 10 10

100

Score:

COSE212, 2025 Fall Midterm Exam, Page 1 of 10 October 23, 2025

1.

[\

[¥¢¥%¥¢] The following sentences explain basic concepts of programming languages. Fill in the
blanks with the following terms (2 points per blank):

address call-by-reference combined eager pure
call-by-name call-by-value desugaring first-class syntax
call-by-need closure dynamic first-order semantics
« A is a function value that consists of a function definition along with

the environment in which the function was defined.

e The of a programming language defines the meaning of syntactic

elements of the language, as opposed to its which defines the structure

of the elements.

« A evaluation strategy delays the evaluation of function arguments until

their values are used in the function body. Each use of the argument re-evaluates the expression.

¢ A function is said to be if it always produces the same output for the

same input and has no side effects (i.e., it does not modify any external state).

[* 3] Consider the following FACE expression:

/* FACE x/
val x =y => {
// 0 1
val y = (y => x + y)(¥);
// 2 3 4 5 6

x => x)(x = y))
/77 8 9 10 11
};x+y
// 12 13

Answer the following questions using indices (at the odd-numbered lines) of identifiers:

(a) Write all free variables using their indices. (e.g., 4, 7, etc.)

(b) Write all the pairs of bound occurrences and corresponding binding occurrences of variables in
the form of i — j where ¢ and j are the indices of the bound and binding occurrences, respectively.
(e.g.,2 — 1,5 — 3, etc.)

(c) Write all the pairs of shadowing variables and corresponding shadowed variables in the form of
i — j where i and j are the indices of the shadowing and shadowed variables, respectively. (e.g., 6 —
2,3 — 1, etc.)

COSE212, 2025 Fall Midterm Exam, Page 2 of 10 October 23, 2025

3. [¥¢¥%¥¢] Consider the following concrete syntax of expressions:

// basic elements

<digit> R N L A N

<number> 1= "-"7 <digit>+

<alphabet> ::= "a" | "b" | "c¢" | ... | "z"

<id> ::= <alphabet>+

// expressions

<expr> ::= <number> | <id> | <expr> "+" <number> | <id> "=" <expr> | "(" <expr> ")"

Answer whether the following strings are valid expressions according to the concrete syntax. Write O if it
is valid and X if it is not valid. (Each question is worth 1 point, but you will get -1 point for each wrong
answer. The total score will not be negative.)

(a) 1 + -2

(b) x + (1 + 2)

(c) x0 =3 +5

d) x=y) =7

() x =(y=12) +3

4. |10 points [**.i‘z] Wh.ﬂe the original semantics of FACE uses static scoping, we can modify the semantics
to use dynamic scoping as follows:

ok ey = (\v.eg,0’) ocke = v olx = v]F ey = vo
ot egler) = vo

App

Write the results of evaluating each FACE expression with the static scoping and dynamic scoping, respectively.

o If the expression e evaluates to a value v, write the value v.
o If the expression e does not terminate, write “not terminate”.

o If the expression e throws a run-time error, write “error”.

/* FACE x/
val £ = x =>y => x + y;
(x => £(2)(x + 3))(5)

(a) Static Scoping:
(b) Dynamic Scoping:

/* FACE x/

val f = {
val f = x => x + 3;
y => f(y + 2)

}; £(42)

(c) Static Scoping:
(d) Dynamic Scoping:

COSE212, 2025 Fall Midterm Exam, Page 3 of 10

October 23, 2025

9. [% %] Fill in the blanks to complete the derivation tree of the FACE expression:

(] [®] [©]
I Axx = (A\x.x,9) oo FE(£)(1+2)=3

Val
Val

ghval f=Xxx; £f(£)(1+2)=3

where 09 = [f — (Ax.x, &)].

6. [k*¥r] In the following FACE expression, the identifier sum represents a recursive function that
computes the sum from 1 to a given integer. Fill in the blank with an expression that evaluates the

entire expression to 55 (= 1 + 2 + ... + 10).

/* FACE %/

val mkRec = f => {
x=>f@=>xEON(@]
};

val sum = mkRec(sum => n => if (n < 1) O else sum(n + -1) + n);
sum(10)

@)~

COSE212, 2025 Fall Midterm Exam, Page 4 of 10 October 23, 2025

7. [*%%| This question extends FACE to support lists with list operations:

e nil is the empty list.

e ¢g :: e1 prepends the element eg to the list eg.

e foldr ey e1 e folds the list ey with initial value e; and binary function e; from the right.
e ¢ ++ e1 appends the list e; to the end of the list eg.

The followings are the extended concrete and abstract syntax:

<expr> ::

| nil | <expr> "::" <expr>
| "foldr" <expr> <expr> <expr> | <expr> "++" <expr>

Expressions E > e = ... | nil (Nil) | foldr e e ¢ (Foldr)
| e :: e (Cons) | e ++e (Append)

The followings are the examples and expected results of the new list operations:

foldr (1 :: 2 :: 3 :: 4 :: nil) 0 (x =>y => x + y)
// evaluates to 10 (i.e., 1 + (2 + (3 + (4 + 0))))

foldr ((2 :: 3 :: nil) ++ (4 :: 5 :: nil)) 1 (x =>y => x * y)
// evaluates to 120 (i.e., 2 * (3 *x (4 * (5 % 1))))

We can define semantics for lists and list operations as syntactic sugar with the following desugaring
rules. The omitted cases recursively apply the desugaring rule to sub-expressions. Please fill in the blanks
to complete the desugaring rules.

D[nil] = Az \y.y

Dleq :: e1] = Az.\y.z(Dleo])(Dlea] () (y))
where x and y are not free identifiers in eg and e;

D[foldr ey e e2] =

DII@O ++ 61]] =

COSE212, 2025 Fall Midterm Exam, Page 5 of 10 October 23, 2025

8. [* ¥ ¥¢] In this question, you will write the result of copying garbage collection algorithm.

case class Node(var data: Int, var next: Node)
var x = Node(5, Node(4, Node(8, Node(3, null))))
x.next.next.next = x.next

X = X.next

x.next = Node(7, x.next)

After executing the above Scala program, the register and memory layout are as follows:

Register = 5

01 3]0 8|5 4|95 |5 |73 2|9]|11]2]5

0 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15

From-Space =

ojofo0;0({0y0}0}0j0j0j0{0j010]0]0

6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

To-Space =

e The register stores the value of the variable x.

e The memory layout is a sequence of memory cells indexed by integer addresses and consists of two
parts: the from-space for allocated memory cells and the to-space for copying garbage collection.

o FEach memory cell stores either an integer or an address. The null value is represented by address 0.

e Each Node data structure occupies two consecutive memory cells: the first cell stores the data field,
and the second stores the next field.

For example, the value of the variable x is stored in the register, which is an address 5 that represents a
Node data structure:

o the data field is an integer 4 (at address 5)
o the next field is an address 9 (at address 6)

The copying garbage collection algorithm:

e copies all reachable objects from the from-space to the to-space sequentially, starting at address 16
and traversing in a breadth-first order from the root (i.e., the value stored in the register); and

e updates the original cells in the from-space to store a forwarding pointer that records the new
address in the to-space, along with the tag value 99.

For example, if a Node data structure originally located at address 5 is copied to address 16 in the to-space,
then the cells at addresses 5 and 6 in the from-space are updated as follows:

e 99 as the tag value (at address 5)
o 16 as the forwarding pointer (at address 6)

Fill in the blanks in the following table representing the updated register and memory layout after performing
copying garbage collection. Note that there is no explicit deallocation step in the copying garbage collection.
Instead, the entire from-space is reclaimed as free memory once all live objects have been copied to the
to-space.

Register =

From-Space =

To-Space =

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

COSE212, 2025 Fall Midterm Exam, Page 6 of 10 October 23, 2025

9. [*¥¢] This question modifies the semantics of FACE to support lazy evaluation:

Add0|—€1:>1)1 ’U1~Un1 0'|—€2:>'U2 UQUTLQ

olkel +e=ni+ny

MlU|—€1:>7)1 vlllnl 0"62:>U2 'U2~U/TLQ
u

ol el ¥ ey = ny X ng

O’|—61:>7)1 vlllnl 0"62:>1)2 'U2~U/TLQ
t
ohkel <ea=ni <ng

ok ey = vo | (A\z.e2,0’) o[z — (e, o) F ez = vo
App
o+ 60(61) = V2
Is ok ey = v vo { true ockel=n Is ot ey = v vo | false ot ey = vy
T o b if (eg) e1 else ea = v; r o b if (eg) e1 else ea = w9
with the following extended values
Values Vovu=... | {e0) (ExprV)
and the strict evaluation for values:
v{v
cke=w v
nin byb (Ax.e,o) | (Az.e,0) (e o) o

Note that there is no change to the other evaluation rules (Num, Bool, Id, Fun, and Val).

Write the results of evaluating each expression with the above lazy evaluation semantics. If the result is
a closure or an expression value, write its captured environment as well (e.g., (z + 1, [z — 2]))). If the
expression throws a run-time error, write “error”.

(x=>x)1 +2)

(a) Result:

(x => (y => y)x)) (2 * 3)

(b) Result:

val f = x => x;
val y = 2 * b;
(z=>1f@z+yy)+ 1

(c) Result:

COSE212, 2025 Fall Midterm Exam, Page 7 of 10 October 23, 2025

10. | 10 points | [*% <] This question implements the code transformation optimize that takes an expression e

in BMFAE and returns an optimized expression. We say optimize is correct if it satisfies following properties
for any expression e:

o If e evaluates to a number n, then optimize(e) also evaluates to the same number n.

o If e evaluates to a box, then optimize(e) also evaluates to a box.

o If e evaluates to a function, then optimize(e) also evaluates to a function.

o If e does not terminate, then optimize(e) also does not terminate.

o If e throws a run-time error, then optimize(e) also throws a run-time error.

The basic structure of the code transformation is given as follows and each optimization adds a new case to
the pattern matching.

def optimize(expr: Expr): Expr = expr match
// optimization cases will be added here
case Num(number) => Num(number)
case Add(left, right) => Add(optimize(left), optimize(right))
case Mul(left, right) => Mul (optimize(left), optimize(right))
case Var(name, init, body) => Var(name, optimize(init), optimize(body))
case Id(name) => Id(name)
case Fun(param, body) => Fun(param, optimize(body))
case App(fun, arg) => App(optimize(fun), optimize(arg))
case NewBox(content) => NewBox (optimize(content))
case GetBox(box) => GetBox(optimize (box))
case SetBox(box, content) => SetBox(optimize(box), optimize(content))
case Assign(name, expr) => Assign(name, optimize(expr))
case Seq(left, right) => Seq(optimize(left), optimize(right))

For each implemented case of optimize, 1) write the optimization result for a given expression, 2) select
either correct or incorrect for the optimization, and 2) explain whether the reasoning as follows:

e an explanation of why the optimization is correct; or

« an expression e as a counterexample and its different evaluation results for e and optimize(e).

For example, consider the following optimization case:

def optimize(expr: Expr): Expr = expr match
case Add(left, right) => (optimize(left), optimize(right)) match
case (Num(nl), Num(n2)) => Num(nl + n2)
case (1, 1) => Add(1, r)

The optimization result of x + (1 + 2 + 3) is x + 6. This optimization is correct because adding two numbers
can be computed ahead of time without changing the semantics of the original expression.

However, consider the following optimization case:

def optimize(expr: Expr): Expr = expr match
case Mul(left, right) => (optimize(left), optimize(right)) match
case (_, Num(0)) => Num(0)
case (1, 1) => Mul(l, r)

The optimization result of x * 0 is 0. This optimization is incorrect because if x * 0 throws a run-time
error because x is a free identifier, but the optimized expression 0 evaluates to the number 0.

COSE212, 2025 Fall Midterm Exam, Page 8 of 10

October 23, 2025

(a) Consider the following optimization:

def optimize(expr: Expr): Expr = expr match

case (NewBox(el), e2)
case (b, ¢)

=> Seq(el, e2)
=> SetBox (b, c)

case SetBox(box, content) => (optimize(box), optimize(content)) match

The optimization result of’ Box(x = 1).set(£(42)) ‘is

and this optimization is | correct / incorrect | because:

(b) Consider the following optimization:

def optimize(expr: Expr): Expr = expr match
case Seq(left, right) => (optimize(left), optimize(right))
case (SetBox(box, content), GetBox(box2)) if box box2
case (1, r)

match
=> SetBox(box, content)
=> Seq(l, r)

The optimization result of’ x.set(42); x.get ‘ is

and this optimization is | correct / incorrect | because:

COSE212, 2025 Fall Midterm Exam, Page 9 of 10 October 23, 2025

11. | 10 points | [%* % %] This question extends the syntax and semantics of BMFAE to support default arguments
for functions. The followings are the modified concrete and abstract syntax of function definitions and
function applications in BMFAE:

<expr> ::= ...
// original syntax for function definitions and applications
| <id> "=>" <expr> | <expr> "(" <expr> ")"
// newly added cases for default arguments
l n(u <id> "=" <expr> u)n n=sn <expr>" | <eXpr> u(n n)u
Expressions E > e = ... | \x.e | A(z=e).e (Fun) | e(e) | e() (App)

with a modified definition of closure values:
Values V3 v = ... | (AM(z=L1).e,0) | (A\(xz=v).e,0) (CloV)

where x=1 indicates that the function parameter x has no default argument, while z=v indicates that the
function parameter x has a default argument value v in the closure.

enum Expr:

case Fun(param: String, default: Option[Expr], body: Expr)
case App(fun: Expr, arg: Option[Expr])

enum Value:
case CloV(param: String, default: Option[Value], body: Expr, env: Env)

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
// omitted cases for other expressions

// original cases for function definitions and applications
case Fun(param, None, body) =>
(CloV(param, None, body, env), mem)
case App(fun, Some(arg)) =>
val (fv, fmem) = interp(fun, env, mem)
fv match
case CloV(param, _, body, fenv) =>
val (av, amem) = interp(arg, env, fmem)
val addr = malloc(amem)
interp(body, fenv + (param -> addr), amem + (addr -> av))
case _ =>
error("not a function")
// newly added cases for default arguments
case Fun(param, Some(default), body) =>
val (v, newMem) = interp(default, env, mem)
(CloV(param, Some(v), body, env), newMem)
case App(fun, None) =>
val (fv, fmem) = interp(fun, env, mem)
fv match
case CloV(param, Some(default), body, fenv) =>
val addr = malloc(fmem)
interp(body, fenv + (param -> addr), fmem + (addr -> default))

case CloV(_, None, _, _) =>
error ("missing argument for function")
case _ =>

error ("not a function")

COSE212, 2025 Fall Midterm Exam, Page 10 of 10 October 23, 2025

(a) Write the inference rules for the big-step operational semantics of two extended syntactic
cases in BMFAE: 1) function definitions (i.e., Fun) and 2) function applications (i.e., App). The inference
rules should follow the semantics implemented in the given Scala code.

(b) Write down evaluation results of the following expressions of extended BMFAE.

/* BMFAE with default arguments */

var f = (box=Box(0)) => k => box.set(box.get + k);
var x = f();

var y = £();

{ x(D; x(2); x(3) } + { y(10); y(20) }

Ol i W N =

Result:
1 |/* BMFAE with default arguments */
2 |var inc = box => box.set(box.get + 1);
3 |var £ = (k=0) => (box=Box(k)) => box;
| |var g = £Q);
5 |var x = g();
6 |var y = g(O;
7 lvar z = £ Q);
8 |{ inc(x); inc(x) } * { inc(y); inc(y); inc(y) } * { inc(z); inc(z); inc(z); inc(z) }

Result:

This is the last page.
I hope that your tests went well!

Appendix

FACE — Arithmetic Expressions with Functions and Conditionals
The following is the concrete syntax of FACE:

// basic elements

<digit> A L L B L B R
<number> pi= "-"7 <digit>+
<alphabet> ::= "A" | "B" | "C" | ... | "Z" | "a" | "b" | "c" | ... | "z"
<idstart> ::= <alphabet> | "_"
<idcont> ::= <alphabet> | "_" | <digit>
<keyword> ::= "true" | "false" | "val" | "if" | "else"
<id> ::= <idstart> <idcont>* butnot <keyword>
// expressions
<expr> ::= <number> | "true" | "false" | "(" <expr> ")" | "{" <expr> "}"
| <expr> "+" <expr> | <expr> "x" <expr> | <expr> "<" <expr>
| <id> | "val" <id> "=" <expr> ";" <expr> | <id> "=>" <expr>
| <expr> "(" <expr> ")" | "if" "(" <expr> ")" <expr> "else" <expr>

The followings are the abstract syntax of FACE and the precedence and associativity of operators:

Expressions E 3 e =n (Num) | e *x e (Mul) | \z.e (Fun)
| b (Bool) le<e (Lt) | e(e) (App)
| e + e (Add) | = (Id) |valx =e; € (Val)

| if (e) e else e (If)

Numbers n € Z (BigInt) Booleans b€ B = {true,false} (Boolean) Identifiers =z,y,z € X

Description | Operator | Precedence | Associativity
Multiplicative * 3
Additive + 2 left
Relational < 1

The big-step operational (natural) semantics of FACE is defined as:

O'|—€1:>77,1 0’|—62:>n2
Num —M8MMM Bool —— — Add
ckbkn=n ckb=1b okel +e=n1+ny
Mlal—elz>n1 ok e = ny . okel=m ok ey = no x € Domain(o)
u t
ok el *xey=ng Xng okel <ey=n; <ng obFx=o(x)
- . ot ey = (\v.ea,0”) ocke = o[z — vk ex = g
un PP
ok Ar.e = (Azx.e, o) ot ep(er) = vo
VlU|—61:>7)1 oz v] k- ex = vy
a.
oFval x =eq; ea = vy
ot ey = true ockbe =1 ok ey= false ol ey = vy

If If

T ok if (eo) e1 else ex = v; F ok if (eg) e1 else ex = v

where

=n (NumV) Environments o € X 25V (Env)
| b (BoolV)
| (\x.e,o) (CloV)

Values V> wv ::

(String)

BMFAE — and Arithmetic Expressions with Functions, Mutable Variables, and Arrays

The following is the concrete syntax of BMFAE:

// basic elements

<keyword>

= "yar" | "Box"
<id> = <idstart> <idcont>* butnot <keyword>
// expressions
<expr> ce= <number> | ||(u <expr> n)n I u{n <expr> n}u

| <expr> "+" <expr> | <expr> "*" <expr>

| <id> | <id> "=>" <expr> | <expr> "(" <expr> ")"

I "BOX" n (" <expr> Il) n I <expr> n . n ||get n | <eXpI‘> n . n llsetll n (Il <expr> |I) n
| "var" <id> "=" <expr> ";" <expr> | <id> "=" <expr> | <expr> ";" <expr>

The followings are the abstract syntax of BMFAE and the precedence and associativity of operators:

Expressions E > e :=n (Num) | © (Ia) | Box(e) (NewBox) | var x = e; e (Var)
| e +e (Add) | \x.e (Fun) | e.get (GetBox) |z =e (Assign)
|exe (Mul) | e(e) (App) | e.set(e) (SetBox) | e; e (Seq)

Numbers n € Z (BigInt) Identifiers x,y,z € X (String)
Description | Operator | Precedence | Associativity
Multiplicative * 3
Additive ¥ 2 left
Assignment = 1 right
The big-step operational (natural) semantics of BMFAE is defined as:
’a,ﬂl%—e::>u,ﬂl‘
x € Domain(o)
Num Id Fun
oo Mbtn=nM o M¥Fx= M(o(z)), M o,MF \x.e = (Ax.e,o), M
Addo‘,Ml—€1:>7’L1,M1 O',M1|—€2:>n2,M2 MlO’,Ml—€1:>n1,M1 O',M1|—62:>n2,M2
o, MFE e +ey=ny+ ng, Mo h o, MFE e % eg = ny X no, Mo
o, Mt ey = (\v.e3,0'), My o, My F ey = vy, My
a ¢ Domain(My) o[z + a], Mala — vo] - e3 = v, M3 o, M&Fe=a,M
App GetBox
o, M F ej(ez) = vs, M3 o, Mt e.get = Mi(a), My
o, Mb¢e= v, M a ¢ Domain(Mj) o, MFe = a, M o, My F ey = v, My
NewBox SetBox
o, M + Box(e) = a, Mi[a — v] o, M ey .set(e2) = v, Mala +— v]
v o, MF el = v, M a ¢ Domain(My) olx — al, Mila — v1| b ea = vy, My
ar
o, M Fvar x = ey; ea = v, Mo
o, MFe= v, M x € Domain(o) o, MbFe = _, M o, My F ey = v9, Mo
Assign ; Seq
o, MbFx=e=v,Mo(x)—] o, M & eq; es = vy, My
where
Values Vv u=n (NumV) Environments o e XA (Env)
a (BoxV) Memories M eA™y (Mem)

(Az.e,0) (CloV) Addresses a €A (Addr)

