Lecture 11 — Mutable Variables

COSE212: Programming Languages

Jihyeok Park

NPLRG

2025 Fall

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025

Recall ’VNPLRG

e Mutation makes it possible to change the state of a program by
updating the contents of a data structure or a variable.
® Mutable data structures
® Mutable variables

Mutable Data Structures — Mutable Boxes

BFAE — FAE with Mutable Boxes

® FEvaluation with Memories

In this lecture, we will learn Mutable Variables

MFAE - FAE with Mutable Variables

® Concrete and Abstract Syntax
® Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025

Contents ’VNPLRG

1. Mutable Variables

2. MFAE — FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 3/44

Contents ’VNPLRG

1. Mutable Variables

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 4/44

Mutable Variables ’VNPLRG

A mutable variable is a variable whose value can be changed after its
initialization.

Let's define mutable variables in Scala:

// A mutable variable “x° of type “Int~ with 1
var x: Int =1
X + 2 // 1+ 2 ==3: Int

// We can reassign a mutable variable “x°
x =2 // x ==
x + 2 // 2+ 2 ==4: Int

// The function “f° is impure because it uses a mutable variable “y~
var y: Int =1
def f(x: Int): Int = x + y

£(5) // 5+ 1 == : Int
y=3
£(5) // 5 + 3 == : Int

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 5/44

Contents ’VNPLRG

2. MFAE — FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 6/44

MFAE — FAE with Mutable Variables ’VNPLRG

Now, let's extend FAE into MFAE to support mutable variables.

/* MFAE */ /* MFAE */
var x = b; var y = 1;
X; // 5 var f = x => { x =x+y; x * x };
x = 8; £(5); // (5 + 1) * (5 +1) = 36
x // 8 y = 3;

£(5) // (6 + 3) x (5 + 3) =64

For MFAE, we need to extend expressions of FAE with

©® mutable variables (var) rather than immutable variables (val)
(all variables, including parameters, are mutable in MFAE)

@® assignment (=)
(right-associative: e.g., x = y = e is equivalent to z = (y = ¢))

© sequence of expressions

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025

Concrete Syntax ’VPLRG

// expressions

<expr> ::= ...
| "var" <id> "=" <expr> ";" <expr>
| <id> "=" <expr>
| <expr> ";" <expr>

For MFAE, we need to extend expressions of FAE with

@ mutable variables (var) rather than immutable variables (val)
(all variables, including parameters, are mutable in MFAE)

@® assignment (=)
(right-associative: e.g., x = y = e is equivalent to = = (y = ¢))

© sequence of expressions
October 8, 2025

Lecture 11 — Mutable Variables

COSE212 @ Korea University

Abstract Syntax ’VPLRG
Let's define the abstract syntax of MFAE in BNF:

Expressions E 3> e = ...
| var z = e; e (Var)
|z =e (Assign)
| e e (Seq)

enum Expr:

// mutable variable definition

case Var(name: String, init: Expr, body: Expr)
// variable assignment

case Assign(name: String, expr: Expr)

// sequence

case Seq(left: Expr, right: Expr)

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 9/44

Contents

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

COSE212 @ Korea University Lecture 11 — Mutable Variables

’VNPLRG

October 8, 2025

10/ 44

Evaluation with Memories 7VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE */ * 0 = [
var x = b;

ap a1 a2 az

A
M= [] [[.]

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 11/44

Evaluation with Memories 7VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE */ o=

var x = 5; * X = ap

X,]

x = 8;

X A oap a1 az as
Mo=[5] [| [..]

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 12 /44

Evaluation with Memories 7VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE */ o=

var x = 5; X = Qg

X; /* 5 x/ *]

x = 8;

X A :oap a1 a2 as
Mo=[5] [| [..]

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 13 /44

Evaluation with Memories 7VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE */ o=

var x = 5; X = Qg

X; /* 5 x/]

x = 8; *

X A :oap a1 a2 as
Mo=[8] [| [..]

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 14 /44

Evaluation with Memories

’VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE x/

var x = b;

X; /* 5 x/
x = 8;

X /x 8 x/

COSE212 @ Korea University

Lecture 11 — Mutable Variables

o=
X = agp
]

apg a1 a2 as

8] [[I...]

October 8, 2025 15 /44

Evaluation with Memories 7VNPLRG

Here is another MFAE expression:

/* MFAE %/ * o=

var y = 1;

var £ = x => {

X =Xx+7y;]

X * X

B A ap aip a2 ag
£(5);

vo=[[[T I
£(5)

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 16 / 44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; * y — ap

var £ = x => {

X =Xx+7y;]

X * X

;’(5); A ap a1 ag as

y =3 Mo=[1] | [[..]
£(5)

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 17 /44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ 0’:[

var y = 1; y = ap

var f = x => { f—a

X=X +7y;]

X * X

3.;,(5); * A : aqy a1 ay a3

y =3 M =[1]o] | [...]
£(5)

where v = (Ax.(x = x + y; x * x), [y — ag])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 18 /44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE x/ o=

var y = 1; y = ap

var £ = x => { * X ag

X =x+7y;]

X * X

1’(5); A ooap a1 az as

v - 3; M =[1]v]5] |...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 19 /44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { X = a
x=x+y; /*x5+ 1%/ *]

X * X

1’(5); A ooap a1 az as

v - 3; M =[1]v]6] [...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 20/ 44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { X = a
x=x+y;/*5+1*/]

X * X /*x 6 % 6 *x/ *

1’(5); A ooap a1 az as

v - 3; M =[1]v]6] [...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 21 /44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { f—a

X =x+7y;]

X * X

};

£(5); /% 36 */ * A 4 ey ag

v - 3; M =[1]v]6] [...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 22 /44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var f = x => { f—a

X=X +7y;]

X * X

g A : a a1 a az ...
£(5); /* 36 x/

y =3 . M =[3[v][6] [..]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 23 /44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { * X > as

X =x+7y;]

X * X

¥ A . ay aip az ag ...
£(8); /* 36 x/

v - 3; M =[3]v][6]5]...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 24 /44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE x/ o=

var y = 1; y = ap

var £ = x => { X a3
x=x+y; /*x5+ 3%/ *]

X * X

¥ A . ay aip az ag ...
£(5); /* 36 */

v - 3; M =[3]v][6]8]...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 25 /44

Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { X a3
x=x+y;/*5+3*/]

X * X /* 8 % 8 x/ *

¥ A . ayp aip a2 ag
£(5); /* 36 x/

v - 3; M =[3]v][6]8]...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 26 /44

Example

Here is another MFAE expression:

/* MFAE */
var y = 1;
var £ = x => {
X =x+7y;
X * X
};
£(5); /* 36 x/
y =3
£(5) /* 64 */

’VNPLRG

apg ap az ag

A
M=

3lv]6]8]...]

where v = (Ax.(x = x +y; x * x), [y — ao])

COSE212 @ Korea University

Lecture 11 — Mutable Variables

October 8, 2025 27 / 44

Interpreter and Natural Semantics ’MPLRG

For MFAE, we need to 1) implement the interpreter with environments
and memories by passing the updated memory in the result:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = 777

type Env = Map[String, Addr] enum Value:

type Addr = Int case NumV(n: BigInt)

type Mem = Map[Addr, Value] case CloV(p: String, b: Expr, e: Env)

and 2) define the natural semantics with environments and memories by
passing the updated memory in the result:

oo MFe=uv, M

Environments o € X— A (Env)
Addresses a €A (Addr)
Memories M e Ay (Mem)

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025

Mutable Variable ’VNPLRG

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match

case Var(name, init, body) =>
val (iv, imem) = interp(init, env, mem)
val addr = malloc(imem)
interp(body, env + (name -> addr), imem + (addr -> iv))

‘a,Ml—e:v,M‘

o, M e = vy, My

var ¢ Domain(M;) oz~ a], Mi[a — v1] F ea = v, My
ar

o, M Fvar x = ey; ey = vy, Mo

We learned one way to implement malloc in the previous lecture:

def malloc(mem: Mem): Addr = mem.keySet.maxOption.fold(0)(_ + 1)

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025

|dentifier Lookup 7NPLRG

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
case Id(name) => (mem(lookupId(env, name)), mem)

def lookupId(env: Env, name: String): Addr =
env.getOrElse(name, error(s'"free identifier: $name"))

a,Ml—e:v,M‘

2 € Domain(o)
o MbFax= M(o(x)), M

Id

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 30/ 44

Function Application 7NPLRG

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match

case App(fun, arg) =>
val (fv, fmem) = interp(fun, env, mem)
fv match
case CloV(param, body, fenv) =>
val (av, amem) = interp(arg, env, fmem)
val addr = malloc(amem)
interp(body, fenv + (param -> addr), amem + (addr -> av))
case _ =>
error(s'"not a function: ${fv.str}")

‘O‘,M|—6:>’U,M‘

(T,MF€1:><>\.’E.€37CT,>,M1 O',M1F62:>U2,M2
a ¢ Domain(My) o[z + a], Maa — ve] - e3 = v3, M3
o, M+ 61(62) = v3, M3

App

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 31 /44

Assignment 7NPLRG

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match

case Assign(name, expr) =>
val (ev, emem) = interp(expr, env, mem)
(ev, emem + (lookupId(env, name) -> ev))

0,M|—6:>’U,M‘

o,Mte=v,M € Domain(c)

Assi
SS18n o, MFx=e=uv,Mo(z)— v

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 32 /44

Contents ’VNPLRG

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 33 /44

Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)

evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

COSE212 @ Korea University Lecture 11 — Mutable Variables

October 8, 2025 34 /44

Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
O-:[var t = x; G:[
f — ag, X =y; f — ap,
arai, v =t; arai,
b — as, }; b — ag,
] var a = 1;]
var b = 2; *
an a1 a2 a3 ag as f(a)(b); a; b ap a1 a2 as
oofrf2] [] g2]

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 35 /44

Call-by-Value vs. Call-by-Reference

7VNPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBvV /* MFAE */
var £ = x => y => {
G:[var t = x;
X — as, X =7y;
V> ag, y =t
};
] var a = 1;
var b = 2;
o a1 Gz a4z a4 04s f(a)(b); a; b

*

COSE212 @ Korea University

Lecture 11 — Mutable Variables

October 8, 2025 36 /44

Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
O-:[var t = x; * G:[
X'_>a3a X =y; X>—>a1,
Yy = Qy, y=t; y = ag,
t — as, }; t — ag,
] var a = 1;]
var b = 2;
ap ap a2 a3 Qa4 as f(a)(d); a; b ao ay a2 ag

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 37 /44

Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
O-:[var t = x; G:[
X — as, X = y; * X ag,
Yy = Qy, y=t; y = ag,
t — as, }; t — ag,
] var a = 1;]
var b = 2;
ap ap a2 a3 Qa4 as f(a)(d); a; b ao ay a2 ag

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 38 /44

Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
o= var t = x; o=
X'_>a3a X =y; X>—>a1,
y = a4, y =t; * y = ag,
t — as, }; t — ag,
] var a = 1;]
var b = 2;
ap ap a2 a3 Qa4 as f(a)(d); a; b ao ay a2 ag

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 39 /44

Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
O-:[var t = x; G:[
f — ag, X =y; f — ap,
ar—ag, y = t; ar—aj,
b — as, }; b — as,
] var a = 1;]
var b = 2;
ap ap a2 a3 Qa4 as f(a)(d); a; b * ao ay a2 ag

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 40 /44

Function Application (Call-by-Reference) VPLRG

We can define the semantics of MFAE with the call-by-reference (CBR)
evaluation strategy by adding the following case:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match

case App(fun, arg) =>
val (fv, fmem) =
fv match
case CloV(param, body, fenv) => arg match
case Id(name) =>
val addr = lookupId(env, name)

interp(body, fenv + (param -> addr), fmem)
case _ => ...

case

interp(fun, env, mem)

_ => error(s"not a function: ${fv.str}")

O',M Fe = <)\SU/.€2,JI>,M1
x € Domain(o) o'[r' w5 o(2)], M1 F ez = v, My
o, M F e1(z) = vg, My

App,

COSE212 @ Korea University

Lecture 11 — Mutable Variables

October 8, 2025

Exercise #7 7NPLRG

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/mfae

® Please see above document on GitHub:

® |mplement interp function.
® Implement interpCBR function.

® |t is just an exercise, and you don’t need to submit anything.

® However, some exam questions might be related to this exercise.

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 42 /44

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/mfae

Summary ’VPLRG

1. Mutable Variables

2. MFAE — FAE with Mutable Variables
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for MFAE
Evaluation with Memories
Interpreter and Natural Semantics
Mutable Variable
Identifier Lookup
Function Application
Assignment

4. Call-by-Value vs. Call-by-Reference

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 43 /44

Next Lecture

e Garbage Collection

COSE212 @ Korea University

’VNPLRG

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

Lecture 11 — Mutable Variables October 8, 2025

https://plrg.korea.ac.kr

	Mutable Variables
	MFAE – FAE with Mutable Variables
	Concrete Syntax
	Abstract Syntax

	Interpreter and Natural Semantics for MFAE
	Evaluation with Memories
	Interpreter and Natural Semantics
	Mutable Variable
	Identifier Lookup
	Function Application
	Assignment

	Call-by-Value vs. Call-by-Reference

