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Recall ’VNPLRG

e Mutation makes it possible to change the state of a program by
updating the contents of a data structure or a variable.
® Mutable data structures
® Mutable variables

Mutable Data Structures — Mutable Boxes

BFAE — FAE with Mutable Boxes

® FEvaluation with Memories

In this lecture, we will learn Mutable Variables

MFAE - FAE with Mutable Variables

® Concrete and Abstract Syntax
® Interpreter and Natural Semantics
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Mutable Variables ’VNPLRG

A mutable variable is a variable whose value can be changed after its
initialization.

Let's define mutable variables in Scala:

// A mutable variable “x° of type “Int~ with 1
var x: Int =1
X + 2 // 1+ 2 ==3: Int

// We can reassign a mutable variable “x°
x =2 // x ==
x + 2 // 2+ 2 ==4: Int

// The function “f° is impure because it uses a mutable variable “y~
var y: Int =1
def f(x: Int): Int = x + y

£(5) // 5+ 1 == : Int
y=3
£(5) // 5 + 3 == : Int
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MFAE — FAE with Mutable Variables ’VNPLRG

Now, let's extend FAE into MFAE to support mutable variables.

/* MFAE */ /* MFAE */
var x = b; var y = 1;
X; // 5 var f = x => { x =x+y; x * x };
x = 8; £(5); // (5 + 1) * (5 +1) = 36
x // 8 y = 3;

£(5) // (6 + 3) x (5 + 3) =64

For MFAE, we need to extend expressions of FAE with

©® mutable variables (var) rather than immutable variables (val)
(all variables, including parameters, are mutable in MFAE)

@® assignment (=)
(right-associative: e.g., x = y = e is equivalent to z = (y = ¢))

© sequence of expressions
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Concrete Syntax ’VPLRG

// expressions

<expr> ::= ...
| "var" <id> "=" <expr> ";" <expr>
| <id> "=" <expr>
| <expr> ";" <expr>

For MFAE, we need to extend expressions of FAE with

@ mutable variables (var) rather than immutable variables (val)
(all variables, including parameters, are mutable in MFAE)

@® assignment (=)
(right-associative: e.g., x = y = e is equivalent to = = (y = ¢))

© sequence of expressions
October 8, 2025

Lecture 11 — Mutable Variables

COSE212 @ Korea University



Abstract Syntax ’VPLRG
Let's define the abstract syntax of MFAE in BNF:

Expressions E 3> e = ...
| var z = e; e (Var)
|z =e (Assign)
| e e (Seq)

enum Expr:

// mutable variable definition

case Var(name: String, init: Expr, body: Expr)
// variable assignment

case Assign(name: String, expr: Expr)

// sequence

case Seq(left: Expr, right: Expr)
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Evaluation with Memories 7VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE */ * 0 = [
var x = b;

ap a1 a2 az

A
M= [ ] [ [.]
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Evaluation with Memories 7VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE */ o=

var x = 5; * X = ap

X, ]

x = 8;

X A oap a1 az as
Mo=[5] [ | [..]

COSE212 @ Korea University Lecture 11 — Mutable Variables October 8, 2025 12 /44



Evaluation with Memories 7VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE */ o=

var x = 5; X = Qg

X; /* 5 x/ * ]

x = 8;

X A :oap a1 a2 as
Mo=[5] [ | [..]
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Evaluation with Memories 7VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE */ o=

var x = 5; X = Qg

X; /* 5 x/ ]

x = 8; *

X A :oap a1 a2 as
Mo=[8] [ | [..]
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Evaluation with Memories

’VNPLRG

We can represent mutable variables by assigning different addresses to
each variable in the environment and storing their values in the memory.

Let's see how to evaluate the following MFAE expression:

/* MFAE x/

var x = b;

X; /* 5 x/
x = 8;

X /x 8 x/

COSE212 @ Korea University
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o=
X = agp
]

apg a1 a2 as

8] [ [ I...]
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Evaluation with Memories 7VNPLRG

Here is another MFAE expression:

/* MFAE %/ * o=

var y = 1;

var £ = x => {

X =Xx+7y; ]

X * X

B A ap aip a2 ag
£(5);

vo=[ [ [ T I
£(5)
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; * y — ap

var £ = x => {

X =Xx+7y; ]

X * X

;’(5); A ap a1 ag as

y =3 Mo=[1] | [ [..]
£(5)
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ 0’:[

var y = 1; y = ap

var f = x => { f—a

X=X +7y; ]

X * X

3.;,(5); * A : aqy a1 ay a3

y =3 M =[1]o] | [...]
£(5)

where v = (Ax.(x = x + y; x * x), [y — ag])
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE x/ o=

var y = 1; y = ap

var £ = x => { * X ag

X =x+7y; ]

X * X

1’(5); A ooap a1 az as

v - 3; M =[1]v]5] |...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { X = a
x=x+y; /*x5+ 1%/ * ]

X * X

1’(5); A ooap a1 az as

v - 3; M =[1]v]6] [...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { X = a
x=x+y;/*5+1*/ ]

X * X /*x 6 % 6 *x/ *

1’(5); A ooap a1 az as

v - 3; M =[1]v]6] [...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { f—a

X =x+7y; ]

X * X

};

£(5); /% 36 */ * A 4 ey ag

v - 3; M =[1]v]6] [...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var f = x => { f—a

X=X +7y; ]

X * X

g A : a a1 a az ...
£(5); /* 36 x/

y =3 . M =[3[v][6] [..]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { * X > as

X =x+7y; ]

X * X

¥ A . ay aip az ag ...
£(8); /* 36 x/

v - 3; M =[3]v][6]5]...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE x/ o=

var y = 1; y = ap

var £ = x => { X a3
x=x+y; /*x5+ 3%/ * ]

X * X

¥ A . ay aip az ag ...
£(5); /* 36 */

v - 3; M =[3]v][6]8]...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])
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Example ’NPLRG

Here is another MFAE expression:

/* MFAE */ o=

var y = 1; y = ap

var £ = x => { X a3
x=x+y;/*5+3*/ ]

X * X /* 8 % 8 x/ *

¥ A . ayp aip a2 ag
£(5); /* 36 x/

v - 3; M =[3]v][6]8]...]
£(5)

where v = (Ax.(x = x +y; x * x), [y — ao])
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Example

Here is another MFAE expression:

/* MFAE */
var y = 1;
var £ = x => {
X =x+7y;
X * X
};
£(5); /* 36 x/
y =3
£(5) /* 64 */

’VNPLRG

apg ap az ag

A
M=

3lv]6]8]...]

where v = (Ax.(x = x +y; x * x), [y — ao])
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Interpreter and Natural Semantics ’MPLRG

For MFAE, we need to 1) implement the interpreter with environments
and memories by passing the updated memory in the result:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = 777

type Env = Map[String, Addr] enum Value:

type Addr = Int case NumV(n: BigInt)

type Mem = Map[Addr, Value] case CloV(p: String, b: Expr, e: Env)

and 2) define the natural semantics with environments and memories by
passing the updated memory in the result:

oo MFe=uv, M

Environments o € X— A (Env)
Addresses a €A (Addr)
Memories M e Ay (Mem)
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Mutable Variable ’VNPLRG

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match

case Var(name, init, body) =>
val (iv, imem) = interp(init, env, mem)
val addr = malloc(imem)
interp(body, env + (name -> addr), imem + (addr -> iv))

‘a,Ml—e:v,M‘

o, M e = vy, My

var ¢ Domain(M;) oz~ a], Mi[a — v1] F ea = v, My
ar

o, M Fvar x = ey; ey = vy, Mo

We learned one way to implement malloc in the previous lecture:

def malloc(mem: Mem): Addr = mem.keySet.maxOption.fold(0)(_ + 1)
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|dentifier Lookup 7NPLRG

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
case Id(name) => (mem(lookupId(env, name)), mem)

def lookupId(env: Env, name: String): Addr =
env.getOrElse(name, error(s'"free identifier: $name"))

a,Ml—e:v,M‘

2 € Domain(o)
o MbFax= M(o(x)), M

Id
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Function Application 7NPLRG

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match

case App(fun, arg) =>
val (fv, fmem) = interp(fun, env, mem)
fv match
case CloV(param, body, fenv) =>
val (av, amem) = interp(arg, env, fmem)
val addr = malloc(amem)
interp(body, fenv + (param -> addr), amem + (addr -> av))
case _ =>
error(s'"not a function: ${fv.str}")

‘O‘,M|—6:>’U,M‘

(T,MF€1:><>\.’E.€37CT,>,M1 O',M1F62:>U2,M2
a ¢ Domain(My) o[z + a], Maa — ve] - e3 = v3, M3
o, M+ 61(62) = v3, M3

App
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Assignment 7NPLRG

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match

case Assign(name, expr) =>
val (ev, emem) = interp(expr, env, mem)
(ev, emem + (lookupId(env, name) -> ev))

0,M|—6:>’U,M‘

o,Mte=v,M € Domain(c)

Assi
SS18n o, MFx=e=uv,Mo(z)— v
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Contents ’VNPLRG

4. Call-by-Value vs. Call-by-Reference
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Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)

evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.
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Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
O-:[ var t = x; G:[
f — ag, X =y; f — ap,
arai, v =t; arai,
b — as, }; b — ag,
] var a = 1; ]
var b = 2; *
an a1 a2 a3 ag as f(a)(b); a; b ap a1 a2 as
oofrf2 ] [ ] g2 ]
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Call-by-Value vs. Call-by-Reference

7VNPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CBvV /* MFAE */
var £ = x => y => {
G:[ var t = x;
X — as, X =7y;
V> ag, y =t
};
] var a = 1;
var b = 2;
o a1 Gz a4z a4 04s f(a)(b); a; b

*
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Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
O-:[ var t = x; * G:[
X'_>a3a X =y; X>—>a1,
Yy = Qy, y=t; y = ag,
t — as, }; t — ag,
] var a = 1; ]
var b = 2;
ap ap a2 a3 Qa4 as f(a)(d); a; b ao ay a2 ag
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Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
O-:[ var t = x; G:[
X — as, X = y; * X ag,
Yy = Qy, y=t; y = ag,
t — as, }; t — ag,
] var a = 1; ]
var b = 2;
ap ap a2 a3 Qa4 as f(a)(d); a; b ao ay a2 ag
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Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
o= var t = x; o=
X'_>a3a X =y; X>—>a1,
y = a4, y =t; * y = ag,
t — as, }; t — ag,
] var a = 1; ]
var b = 2;
ap ap a2 a3 Qa4 as f(a)(d); a; b ao ay a2 ag
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Call-by-Value vs. Call-by-Reference ’MPLRG

The current semantics of MFAE is based on the call-by-value (CBV)
evaluation strategy, because the argument expression is always evaluated
and the result value is passed to the parameter.

However, we can define the semantics of MFAE in another way by using
the call-by-reference (CBR) evaluation strategy instead; if the argument
expression is an identifier, the parameter points to its address.

CcBvV /% MFAE %/ CBR
var £ = x => y => {
O-:[ var t = x; G:[
f — ag, X =y; f — ap,
ar—ag, y = t; ar—aj,
b — as, }; b — as,
] var a = 1; ]
var b = 2;
ap ap a2 a3 Qa4 as f(a)(d); a; b * ao ay a2 ag
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Function Application (Call-by-Reference) VPLRG

We can define the semantics of MFAE with the call-by-reference (CBR)
evaluation strategy by adding the following case:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match

case App(fun, arg) =>
val (fv, fmem) =
fv match
case CloV(param, body, fenv) => arg match
case Id(name) =>
val addr = lookupId(env, name)

interp(body, fenv + (param -> addr), fmem)
case _ => ...

case

interp(fun, env, mem)

_ => error(s"not a function: ${fv.str}")

O',M Fe = <)\SU/.€2,JI>,M1
x € Domain(o)  o'[r' w5 o(2)], M1 F ez = v, My
o, M F e1(z) = vg, My

App,
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Exercise #7 7NPLRG

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/mfae

® Please see above document on GitHub:

® |mplement interp function.
® Implement interpCBR function.

® |t is just an exercise, and you don’t need to submit anything.

® However, some exam questions might be related to this exercise.
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Next Lecture

e Garbage Collection

COSE212 @ Korea University

’VNPLRG

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

Lecture 11 — Mutable Variables October 8, 2025


https://plrg.korea.ac.kr

	Mutable Variables
	MFAE – FAE with Mutable Variables
	Concrete Syntax
	Abstract Syntax

	Interpreter and Natural Semantics for MFAE
	Evaluation with Memories
	Interpreter and Natural Semantics
	Mutable Variable
	Identifier Lookup
	Function Application
	Assignment

	Call-by-Value vs. Call-by-Reference

