Lecture 18 — Type Systems

COSE212: Programming Languages

Jihyeok Park

NPLRG

2025 Fall

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025

Recall ’VNPLRG

® \We learned about continuations with the following topics:

¢ Continuations (Lecture 14 & 15)
¢ First-Class Continuations (Lecture 16)
® Compiling with continuations (Lecture 17)

® From now on, we will learn about type systems with the following
topics until the end of the semester:
® Typed Languages
Typing Recursive Functions
Algebraic Data Types
Parametric Polymorphism
Subtype Polymorphism
Type Inference

® |n this lecture, we will focus on the motivation and basic concepts
of type systems.

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 2/32

Contents ’VNPLRG

1. Motivation: Safe Language Systems
Detecting Run-Time Errors
Dynamic vs Static Analysis
Soundness vs Completeness

2. Type Systems
Types
Type Errors
Type Checking
Type Soundness

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 3/32

Contents ’VNPLRG

1. Motivation: Safe Language Systems
Detecting Run-Time Errors
Dynamic vs Static Analysis
Soundness vs Completeness

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 4/32

Run-Time Errors ’VNPLRG

So far, we have designed diverse programming languages with:

e Syntax: a grammar that defines the structure of programs

e Semantics: a set of rules that defines the meaning of programs
and implemented their interpreters in Scala:

P

However, we don't have any automatic system to check whether a
program is evaluated without any run-time errors.

For example, following FAE expressions are syntactically correct, but they
throw run-time errors:

/*x FAE */

x * 42 // error: free identifier

0+ (x => x) // error: cannot add a function
1(2) // error: cannot apply a number

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 5/32

Errors in Saftety-Critical Software

Unexpected errors in safety-critical software cause serious problems:

MPLR

Cruise recalls all its driverless c:

June 4, 1996: Ariane-5 explodes Knight Capital Says Trading Glitch Cost It | Heathrow Airport apologises
aﬂer ““0“ R L o N for IT failure disruption
rxe a
Rocket Financial Airport Auto. Vehicle
(1996) (2012) (2020) (2024)

Then, how can we prevent such errors?

Can we automatically check whether a program does not have any

run-time errors?

COSE212 @ Korea University

Lecture 18 — Type Systems

November 10, 2025

G

6/32

Detecting Run-Time Errors 7V PLRG

We can use various analysis techniques to detect run-time errors:

P
Program Analyzer Interpreter Result

An analyzer is a program that takes a program as an input and
determines whether the program has a certain property. In this case, the
property is run-time errors.

We can categorize them into two groups:
® Dynamic Analysis: analyze programs by executing them

e Static Analysis: analyze programs without executing them

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 7/32

Dynamic Analysis

Dynamic analysis is a program analysis technique by executing them.

’VNPLRG

Let's perform dynamic analysis for the following Scala program:

def abs(x: Int): Int = { /*
if (x < 0) /*
-x /*
else /*
X /%

¥ /*

L1
L2
L3
L4
L5
L6

*/
*/
*/
*/
*/
*/

COSE212 @ Korea University

Lecture 18 — Type Systems

November 10, 2025

8/32

Dynamic Analysis

Dynamic analysis is a program analysis technique by executing them.

’VNPLRG

Let's perform dynamic analysis for the following Scala program:

def abs(x: Int): Int = { /*
if (x < 0) /*
-x /*
else /*
X /%

¥ /*

L1
L2
L3
L4
L5
L6

*/
*/
*/
*/
*/
*/

L1 | -5
L2 | -5
L3 5
L4
L5
L6 5

COSE212 @ Korea University

Lecture 18 — Type Systems

November 10, 2025

9/32

Dynamic Analysis 7NPLRG

Dynamic analysis is a program analysis technique by executing them.

Let's perform dynamic analysis for the following Scala program:

def abs(x: Int): Int = { /* L1 %/ L1 | -5 | 42
if (x < 0) /* L2 %/ L2 | -5
X /* L3 */ L3 5

else /x L4 x/ L4 49

X /* L5 */ L5 42

} /* L6 */ L6 | 5 | 42

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 10/32

Dynamic Analysis 7NPLRG

Dynamic analysis is a program analysis technique by executing them.

Let's perform dynamic analysis for the following Scala program:

def abs(x: Int): Int = { /* L1 %/ L1 | -5 |42 | -7 |99 | 0
if (x < 0) /* L2 %/ L2 | -5 -7
-X /* L3 */ L3 5 7

else /* L4 x/ L4 42 99 | 0

X /* L5 %/ L5 42 99 | 0

} /* L6 *x/ L6 5 | 42 7199 |0

We can easily get the behavior of the program for each single input.

However, it is difficult to get all the possible behaviors of the program
for all the inputs.

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 11/32

Static Analysis ’VPLRG

Static analysis is a program analysis technique without executing them.

Let's perform static analysis for the following Scala program:

def abs(x: Int): Int = { /* L1 %/ T
if (x < 0) /% 12 %/ A RN
-x /* L3 */ D= _|0><_+><0|+
else /* L4 */ N - 0 +
b'd /*x L5 x/ \l/
} /* L6 x/ L

Let's define an abstract domain D for integers to analyze the program.

1l =0 T =7
o = {0} - ={zreZ|x<0} + ={ze€Z|xz>0}
-0=-U0 -+ =-U+ O+ =0U+

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 12 /32

Static Analysis ’VPLRG

Static analysis is a program analysis technique without executing them.

Let's perform static analysis for the following Scala program:

def abs(x: Int): Int = { /* L1 %/ T L1

if (x < 0) /% 12 */ 0/ L\m+ 2

-x /* L3 */ TN L3
D=

else /* L4 x/ lxoxl L4

x /% L5 */ ANPZ L5

} /* L6 */ L L6

Let’s define an abstract domain D for integers to analyze the program:

1l =0 T =7
o = {0} - ={zreZ|x<0} + ={ze€Z|xz>0}
-0=-U0 -+ =-U+ O+ =0U+

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 13 /32

Static Analysis ’VPLRG

Static analysis is a program analysis technique without executing them.

Let's perform static analysis for the following Scala program:

def abs(x: Int): Int = { /* L1 %/ T L1 | T

if (x < 0) /* 12 */ 0/ L\m+ -

X /* L3 x/ TS L3 | +
D=

else /* L4 */ lxoxl L4 | o+

x /% 15 */ N/ L5 | o+

¥ /* 16 x/ L L6 | o+

Let’s define an abstract domain D for integers to analyze the program:

1l =0 T =7
o = {0} - ={zreZ|x<0} + ={ze€Z|xz>0}
-0=-U0 -+ =-U+ O+ =0U+

We can prove that abs always returns a non-negative integer (i.e., 0+).

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 14 /32

Soundness vs Completeness ’VPLRG

® 1) denotes that a statement v is provable.
® |= 1) denotes that a statement v is true.

In a sound proof system, all provable statements are true.
F = Ey

In a complete proof system, all true statements are provable.
Ey == F

Analysis techniques can be used to prove that a program is error-free.
® | P denotes that a program P is analyzed as error-free.
e = P denotes that a program P is truly error-free.

Then, is dynamic/static analysis sound or complete?

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 16 /32

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 17 /32

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 18 /32

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

_ == True Positive

R (True Alarm)
4

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 19/32

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

_ == True Positive
- (True Alarm)

False Negative
(Missing Error)

P2 P3

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 20/32

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

_ == True Positive
- (True Alarm)

False Negative
(Missing Error)

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 21/32

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

_ == True Positive= -~ . _
-
(True Alarm) S

False Negative
(Missing Error)

P2 P3

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 22/32

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

_ == True Positive= -~ . _
-
(True Alarm) S

-~
A
A

False i’ositive
(False Alarm)
P2 P3

False Negative
(Missing Error)

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

_ == True Positive= -~ . _
-
(True Alarm) S

-~
A
A

False i’ositive
(False Alarm)
P2 P3

False Negative
(Missing Error)

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025

Soundness vs Completeness ’VPLRG

¢ Dynamic analysis is complete but unsound in general.
® All the detected errors are true alarms (true positive (TP)).
® [t will not detect any errors in error-free programs.
® |t suffers from missing errors (false negative (FN)).
e Static analysis is sound but incomplete in general.
® Not all detected errors are true alarms.
® |t suffers from false alarms (false positive (FP)).
® There is no missing errors. We can prove a program is error-free.

* : Possible States : Error States S E E : Dynamic Analysis : Static Analysis

N Proof of
Len" ‘True Positive=~ . _ . Error-Free

(True Alarm) 3

-~
A
A

False i’ositive
(False Alarm)
P2 P3

False Negative
(Missing Error)

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025

Contents

2. Type Systems
Types
Type Errors
Type Checking
Type Soundness

’VNPLRG

COSE212 @ Korea University Lecture 18 — Type Systems

November 10, 2025

26 /32

Types ’MNPLRG

Definition (Types)

A type is a set of values.

For example, the Int, Boolean, and Int => Int types are defined as the
following sets of values in Scala.

Int ={nez|-28 <n<23}
Boolean = {true,false}
Int => Int = {f | f is a function from Int to Int}

val n: Int = 42 // 42 : Int

n+ 1 // 43 : Int

val b: Boolean = n > 10 // true : Boolean
def f(x: Imt): Int =x +1 // f : Int => Int
£(42) // 43 : Int

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 27/32

Type Errors IPLRG

Definition (Type Errors)

A type error occurs when a program tries to use a value having a type
that is incompatible with the expected type.

For example, the following Scala program has type errors:

42 + true // ~Int> expected for “+°, but “Boolean” found
if (1) 2 else 3 // “Boolean” expected for “if”, but “Int~ found
def f(x: Int): Int = x + 1

f(false) // ~Int” expected for “f°, but “Boolean™ found

However, not all run-time errors are type errors:

42 / 0 // ~ArithmeticException” at run-time
case class A(k: Int)

val x: A = null

x.k // ~NullPointerException™ at run-time

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025

Type Checking ’MPLRG

If the following conditions hold, we say “the expression e has type 7":
® ¢ does not cause any type error, and
® ¢ evaluates to a value of type 7 or does not terminate.

If so, we use the following notation and say that e is well-typed:

Definition (Type Checking)

Type checking is a kind of static analysis checking whether a given
expression ¢ is well-typed. A type checker returns the type of ¢ if it is
well-typed, or rejects it and reports the detected type error otherwise.

Reject

e TypeError
Checker Accept

Type

P

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 29/32

Type Soundness IPLRG

Definition (Type Soundness)

A type system is sound if it guarantees that a well-typed program will
never cause a type error at run-time.

There are two categories of languages in the context of type system:

e Statically-typed languages (or simply typed-language) only allow
well-typed programs to be executed.
(e.g. Java, Scala, Haskell, OCaml, Rust, etc.)

¢ Dynamically-typed languages (or simply untyped-language) allow
any program to be executed, and types exist only at run-time.

(e.g. Python, Ruby, JavaScript, etc.)

Type systems in most statically-typed languages are designed to be sound.

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 30/32

Summary ’VPLRG

1. Motivation: Safe Language Systems
Detecting Run-Time Errors
Dynamic vs Static Analysis
Soundness vs Completeness

2. Type Systems
Types
Type Errors
Type Checking
Type Soundness

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 31/32

Next Lecture ’VNPLRG

® Typed Languages

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 18 — Type Systems November 10, 2025 32/32

https://plrg.korea.ac.kr

	Motivation: Safe Language Systems
	Detecting Run-Time Errors
	Dynamic vs Static Analysis
	Soundness vs Completeness

	Type Systems
	Types
	Type Errors
	Type Checking
	Type Soundness

