Final Exam COSE215: Theory of Computation 2023 Spring

Instructor: Jihyeok Park

June 14, 2023. 14:00-15:15

- If you are not good at English, please write your answers in Korean. (영어가 익숙하지 않은 경우, 답안을 한글로 작성해 주세요.)
- Write answers in good handwriting. If we cannot recognize your answers, you will not get any points. (글씨를 알아보기 힘들면 점수를 드릴 수 없습니다. 답안을 읽기 좋게 작성해주세요.)
- Write your answers in the boxes provided. (답안을 제공된 박스 안에 작성해 주세요.)

Student ID	
Student Name	

Question:	1	2	3	4	5	6	7	8	Total
Points:	15	20	7	8	10	15	10	15	100
Score:									

}

}

1. A pushdown automaton (PDA) $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$ is a 7-tuple where:

- Q is a finite set of **states**
- Σ is a finite set of **symbols**
- Γ is a finite set of **stack alphabets**
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*)$ is a transition function
- $q_0 \in Q$ is the **initial state**
- $Z \in \Gamma$ is the **initial stack alphabet** (the stack is initially Z)
- $F \subseteq Q$ is a set of **final states**

Consider the following PDA P_1 described by a **transition diagram**:

$$P_{1} = \underbrace{ \begin{array}{c} a \ [Z \to XXZ] \\ a \ [X \to XXX] \end{array}}_{\epsilon \ [Z \to Z]} \underbrace{ \begin{array}{c} b \ [Z \to \epsilon] \\ [X \to \epsilon] \end{array}}_{q_{0}} \underbrace{ \begin{array}{c} c \ [Z \to Z] \end{array}}_{\epsilon \ [X \to X]} \underbrace{ \begin{array}{c} q_{1} \end{array}}_{\epsilon \ [Z \to Z]} \underbrace{ \begin{array}{c} q_{2} \end{array}}_{q_{2}} \end{array}$$

A configuration (q, w, α) represents the current status of a PDA, and a one-step move (\vdash) of a PDA P is a transition from a configuration to another one.

(a) 3 points Fill in the blanks:

The language accepted by **final states** of a PDA P is generally defined as:

$$L_F(P) = \{ w \in \Sigma^* \mid (q_0, w, Z) \vdash^* (q, \epsilon, \alpha) \text{ for some } q \in F, \alpha \in \Gamma^* \}$$

Therefore, the language accepted by **final states** of PDA P_1 is:

$$L_F(P_1) = \{$$

(b) 6 points Fill in the blanks:

The language accepted by **empty stacks** of PDA P is generally defined as:

 $L_E(P) = \{ w \in \Sigma^* \mid$

Therefore, the language accepted by **empty stacks** of PDA P_1 is:

 $L_E(P_1) = \{$

(c) 6 points Fill in the blanks with the execution for w = abb in P_1 that explains why the word w is accepted by final states of P_1 (i.e., $w \in L_F(P_1)$):

2. Design each **PDA** P_i using a **transition diagram** whose language $L_E(P_i)$ accepted by **empty stacks** of the PDA P_i is equal to each of the following languages.

(a) 5 points
$$L_E(P_2) = \{ a^n b a^n \mid n \ge 0 \}$$

$$P_2 =$$

(b) 5 points $L_E(P_3) = L(G)$ where G is the following context-free grammar (CFG):

 $S \to \mathbf{c} \mid \mathbf{a}S\mathbf{a} \mid \mathbf{b}S\mathbf{b}$

(c) 10 points $L_E(P_4) = \{a_1 a_2 \cdots a_{2n} \in \{a, b\}^* \mid n \ge 1 \land a_i = a_{n+i} \text{ for some } 1 \le i \le n\}$

3. 7 points Consider the following PDA P_5 :

$$P_{5} = \underbrace{\left[\begin{array}{c} X \to XY \\ \mathbf{b} \ [Y \to \epsilon] \end{array} \right]}_{\epsilon \ [X \to \epsilon]} \mathbf{c} \ [Y \to \epsilon] \\ \mathbf{c} \ [Y \to \epsilon] \\ \epsilon \ [Y \to Y] \end{array} \mathbf{c} \\ \epsilon \ [Y \to Y] \end{array} \mathbf{c} \\ \epsilon \ [Y \to Y] \\ \epsilon \ [Y \to Y] \end{array} \mathbf{c} \\ \epsilon \ [Y \to Y] \\ \epsilon \ [Y \to Y] \end{array}$$

Fill in the blanks in the following context-free grammar (CFG) converted from PDA P_5 whose language is equivalent to the language of empty stacks of the PDA P_5 .

Note that each variable $A_{i,j}^X$ should generate all words that cause the PDA to go from the state q_i to the state q_j by popping the alphabet X:

 $A^X_{i,j} \Rightarrow^* w \qquad \text{if and only if} \qquad (q_i,w,X) \vdash^* (q_j,\epsilon,\epsilon)$

- 4. 8 points Draw a Venn diagram to illustrate the relationships among the following classes of languages:
 - CFL: the class of **context-free languages**.
 - DCFL: the class of deterministic context-free languages.
 - DCFL_{ES}: the class of deterministic context-free languages by empty stacks.
 - **RL**: the class of **regular languages**.

and place the following languages in the Venn diagram:

(1)
$$\{wcw^{R} \mid w \in \{a, b\}^{*}\}$$

(2) $\{a^{n} \mid n \ge 0\}$
(3) $\{a^{n}b^{n} \mid n \ge 0\}$
(4) $\{a^{i}b^{j}c^{k} \mid i, j, k \ge 0 \land (i = j \lor j = k)\}$
(5) $\{ww^{R} \mid w \in \{a, b\}^{*}\}$
(6) $\{0^{n}1 \mid n \ge 0\}$
(7) $\{1(01)^{n}0 \mid n \ge 0\}$
(8) $\{ww \mid w \in \{a, b\}^{*}\}$

 $G_1 =$

5. Consider the following context-free grammar (CFG) G_0 :

$$G_0 = \begin{cases} S \to AB \mid BA \mid C \\ A \to aS \\ B \to bS \\ C \to \epsilon \mid c \mid D \\ D \to dD \end{cases}$$

(a) 3 points Construct a new CFG G_1 consisting of productions produced by replacing **nullable variables** with ϵ in all combinations, except for the ϵ -production, in G_0 :

- (b) 3 points Construct a new CFG G_2 by removing all **unit productions** and adding all possible **non-unit productions** of B to A for each **unit pair** (A, B) in G_1 :
 - $G_2 =$
- (c) 3 points Construct a new CFG G_3 by removing all productions that contain **non**generating variables or come from unreachable variables in G_2 :

- 6. Fill in the blanks in the **proof** showing that each language L_i is **not** a **context-free** language (CFL) in two different ways.
 - (a) 10 points $L_1 = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^i \mathbf{d}^j \mid i, j \ge 0 \}.$

We can prove L_1 is **not** a **CFL** by using the **pumping lemma** for **CFLs**.

- 1. Assume that any positive integer n is given. (i.e., $n \ge 1$)
- 2. Pick a word $L_1 \ni z =$

3. |z| =

 $\geq n.$

- 4. Assume that any split z = uvwxy satisfying (1) |vx| > 0 and (2) $|vwx| \le n$ is given.
- 5. Let i = . We need to show that $\neg ③ uv^i wx^i y \notin L_1$:

(b) 5 points $L_2 = \{w \in \{a, b, c, d\}^* \mid N_a(w) = N_c(w) \land N_b(w) = N_d(w)\}$ where $N_x(w)$ denotes the number of x's in w for each $x \in \{a, b, c, d\}$.

We can prove L_2 is **not** a **CFL** by using the closure properties of **CFLs** and L_1 .

- 1. Let's prove by contradiction.
- 2. Assume that L_2 is a **CFL**.
- 3. Consider the following language L_3 :

$L_3 = \{ \begin{tabular}{ c c c c } \hline \\ \hline $	}
such that L_2 $L_3 = L_1$.	
4. Since CFLs are closed under	
L_1 must be	
5. However, we know that	
6. Therefore, it is a contradiction, and L_2 is not a CFL .	

- 7. Fill in the blanks about **Turing machines (TMs)**.
 - (a) 5 points Draw a TM M_1 that accepts the following language:

(b) 5 points The TM M_2 represents a computable function $f : \{a, b\}^* \to \{a, b\}^*$ s.t.:

- 8. 15 points True/False questions. Answer O for True and X for False. (Note that each question is worth 1 points, but you will get -1 points for each wrong answer. So, if you are unsure about the answer, leave it blank.)
 1. A language is decidable if and only if there is a TM that accepts it.
 - 2. There is no polynomial-time algorithm for all NP problems.
 - 3. If a DCFL L has a prefix property, then L is DCFL_{ES}.
 - 4. All DCFLs always have unambiguous grammars.
 - 5. A language accepted by an unambiguous grammar is always DCFL.
 - 6. The complement of a CFL is always non-CFL.
 - 7. CFLs are closed under difference with regular languages.
 - 8. There is no abstract machine having more expressive power than a TM.
 - 9. NP-hard problems are always NP-complete.
 - 10. If there exists an NP-complete problem that is in P, then P = NP.
 - 11. A Boolean formula $x_1 \wedge (\neg x_1 \vee x_2) \wedge \neg x_2$ is satisfiable.
 - 12. The Boolean satisfiability problem is NP-hard.
 - 13. If there is a polynomial-time TM as a verifier for a search problem π , π is in NP.
 - 14. TMs cannot solve NP-complete problems.
 - 15. If there is a polynomial-time reduction from π_1 to π_2 , then π_1 is harder than π_2 .