Final Exam

COSE215: Theory of Computation 2023 Spring

Instructor: Jihyeok Park
June 14, 2023. 14:00-15:15

- If you are not good at English, please write your answers in Korean. (영어가 익숙하지 않은 경우, 답안을 한글로 작성해 주세요.)
- Write answers in good handwriting.

If we cannot recognize your answers, you will not get any points.
(글씨를 알아보기 힘들면 점수를 드릴 수 없습니다. 답안을 읽기 좋게 작성해주세요.)

- Write your answers in the boxes provided.
(답안을 제공된 박스 안에 작성해 주세요.)

Student ID	
Student Name	

Question:	1	2	3	4	5	6	7	8	Total
Points:	15	20	7	8	10	15	10	15	100
Score:									

1. A pushdown automaton (PDA) $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z, F\right)$ is a 7 -tuple where:

- Q is a finite set of states
- Σ is a finite set of symbols
- Γ is a finite set of stack alphabets
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma \rightarrow \mathcal{P}\left(Q \times \Gamma^{*}\right)$ is a transition function
- $q_{0} \in Q$ is the initial state
- $Z \in \Gamma$ is the initial stack alphabet (the stack is initially Z)
- $F \subseteq Q$ is a set of final states

Consider the following PDA P_{1} described by a transition diagram:

A configuration (q, w, α) represents the current status of a PDA, and a one-step move (\vdash) of a PDA P is a transition from a configuration to another one.
(a) 3 points Fill in the blanks:

The language accepted by final states of a PDA P is generally defined as:

$$
L_{F}(P)=\left\{w \in \Sigma^{*} \mid\left(q_{0}, w, Z\right) \vdash^{*}(q, \epsilon, \alpha) \text { for some } q \in F, \alpha \in \Gamma^{*}\right\}
$$

Therefore, the language accepted by final states of PDA P_{1} is:

$$
L_{F}\left(P_{1}\right)=\{\square\}
$$

(b) 6 points Fill in the blanks:

The language accepted by empty stacks of PDA P is generally defined as:

$$
L_{E}(P)=\left\{w \in \Sigma^{*} \mid \square\right.
$$

Therefore, the language accepted by empty stacks of PDA P_{1} is:

$$
L_{E}\left(P_{1}\right)=\{\square\}
$$

(c) 6 points Fill in the blanks with the execution for $w=\mathrm{abb}$ in P_{1} that explains why the word w is accepted by final states of P_{1} (i.e., $w \in L_{F}\left(P_{1}\right)$):

2. Design each PDA P_{i} using a transition diagram whose language $L_{E}\left(P_{i}\right)$ accepted by empty stacks of the PDA P_{i} is equal to each of the following languages.
(a) 5 points $L_{E}\left(P_{2}\right)=\left\{\mathrm{a}^{n} \mathrm{ba}^{n} \mid n \geq 0\right\}$
\square
(b) 5 points $L_{E}\left(P_{3}\right)=L(G)$ where G is the following context-free grammar (CFG):

$$
S \rightarrow \mathrm{c}|\mathrm{a} S \mathrm{a}| \mathrm{b} S \mathrm{~b}
$$

(c) 10 points $L_{E}\left(P_{4}\right)=\left\{a_{1} a_{2} \cdots a_{2 n} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid n \geq 1 \wedge a_{i}=a_{n+i}\right.$ for some $\left.1 \leq i \leq n\right\}$

3. 7 points Consider the following PDA P_{5} :

Fill in the blanks in the following context-free grammar (CFG) converted from PDA P_{5} whose language is equivalent to the language of empty stacks of the PDA P_{5}.

\square
$A_{0,0}^{X} \rightarrow \square$

$$
A_{0,1}^{X} \rightarrow \square
$$

$$
A_{0,0}^{Y} \rightarrow A_{1,0}^{Y} \mid \mathrm{b}
$$

$$
A_{0,1}^{Y} \rightarrow A_{1,1}^{Y}
$$

$$
A_{1,0}^{Y} \rightarrow A_{0,0}^{Y}
$$

$$
A_{1,1}^{Y} \rightarrow A_{0,1}^{Y} \mid \mathrm{c}
$$

\square

Note that each variable $A_{i, j}^{X}$ should generate all words that cause the PDA to go from the state q_{i} to the state q_{j} by popping the alphabet X :

$$
A_{i, j}^{X} \Rightarrow^{*} w \quad \text { if and only if } \quad\left(q_{i}, w, X\right) \vdash^{*}\left(q_{j}, \epsilon, \epsilon\right)
$$

4. 8 | 8 points Draw a Venn diagram to illustrate the relationships among the following classes |
| :--- |
| of languages: |

- CFL: the class of context-free languages.
- DCFL: the class of deterministic context-free languages.
- DCFL $_{E S}$: the class of deterministic context-free languages by empty stacks.
- RL: the class of regular languages.
and place the following languages in the Venn diagram:
(1) $\left\{w \mathrm{c} w^{R} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
(2) $\left\{\mathrm{a}^{n} \mid n \geq 0\right\}$
(3) $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}$
(4) $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid i, j, k \geq 0 \wedge(i=j \vee j=k)\right\}$
(5) $\left\{w w^{R} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
(6) $\left\{0^{n} 1 \mid n \geq 0\right\}$
(7) $\left\{1(01)^{n} 0 \mid n \geq 0\right\}$
(8) $\left\{w w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$

5. Consider the following context-free grammar (CFG) G_{0} :

$$
G_{0}=\left\{\begin{array}{l}
S \rightarrow A B|B A| C \\
A \rightarrow \mathrm{a} S \\
B \rightarrow \mathrm{~b} S \\
C \rightarrow \epsilon|\mathrm{c}| D \\
D \rightarrow \mathrm{~d} D
\end{array}\right.
$$

(a) 3 points Construct a new CFG G_{1} consisting of productions produced by replacing nullable variables with ϵ in all combinations, except for the ϵ-production, in G_{0} :
\qquad
(b) 3 points Construct a new CFG G_{2} by removing all unit productions and adding all possible non-unit productions of B to A for each unit pair (A, B) in G_{1} :
\square
(c) 3 points Construct a new CFG G_{3} by removing all productions that contain nongenerating variables or come from unreachable variables in G_{2} :
\square
(d) 1 point What is the difference between the languages $L\left(G_{0}\right)$ and $L\left(G_{3}\right)$?

$$
L\left(G_{0}\right) \backslash L\left(G_{3}\right)=\square
$$

6. Fill in the blanks in the proof showing that each language L_{i} is not a context-free language (CFL) in two different ways.
(a) 10 points $L_{1}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{i} \mathrm{~d}^{j} \mid i, j \geq 0\right\}$.

We can prove L_{1} is not a CFL by using the pumping lemma for CFLs.

1. Assume that any positive integer n is given. (i.e., $n \geq 1$)
2. Pick a word $L_{1} \ni z=$ \square
3. $|z|=$ \square $\geq n$.
4. Assume that any split $z=u v w x y$ satisfying (1) $|v x|>0$ and (2) $|v w x| \leq n$ is given.
5. Let $i=$ \qquad . We need to show that $\neg(3) u v^{i} w x^{i} y \notin L_{1}$:
\square
(b) 5 points $L_{2}=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}^{*} \mid N_{\mathrm{a}}(w)=N_{\mathrm{c}}(w) \wedge N_{\mathrm{b}}(w)=N_{\mathrm{d}}(w)\right\}$ where $N_{x}(w)$ denotes the number of x 's in w for each $x \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.

We can prove L_{2} is not a CFL by using the closure properties of CFLs and L_{1}.

1. Let's prove by contradiction.
2. Assume that L_{2} is a CFL.
3. Consider the following language L_{3} :
\square
such that $L_{2} \square L_{3}=L_{1}$.
4. Since CFLs are closed under

$$
L_{1} \text { must be } \square .
$$

5. However, we know that
6. Therefore, it is a contradiction, and L_{2} is not a CFL.
7. Fill in the blanks about Turing machines (TMs).
(a) 5 points Draw a TM M_{1} that accepts the following language:

$$
L\left(M_{1}\right)=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}
$$

\square
(b) 5 points The TM M_{2} represents a computable function $f:\{\mathrm{a}, \mathrm{b}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*}$ s.t.:

$$
f(w)=\square
$$

8. 15 points True/False questions. Answer O for True and X for False.
(Note that each question is worth 1 points, but you will get -1 points for each wrong answer. So, if you are unsure about the answer, leave it blank.)

1. A language is decidable if and only if there is a TM that accepts it.
2. There is no polynomial-time algorithm for all NP problems.

3. If a DCFL L has a prefix property, then L is $\mathrm{DCFL}_{\mathrm{ES}}$.

4. All DCFLs always have unambiguous grammars.
5. A language accepted by an unambiguous grammar is always DCFL.
6. The complement of a CFL is always non-CFL.
7. CFLs are closed under difference with regular languages.
8. There is no abstract machine having more expressive power than a TM.

9. NP-hard problems are always NP-complete.

10. If there exists an NP-complete problem that is in P , then $\mathrm{P}=\mathrm{NP}$.
11. A Boolean formula $x_{1} \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge \neg x_{2}$ is satisfiable.
12. The Boolean satisfiability problem is NP-hard.
13. If there is a polynomial-time TM as a verifier for a search problem π, π is in NP. \square
14. TMs cannot solve NP-complete problems.

15. If there is a polynomial-time reduction from π_{1} to π_{2}, then π_{1} is harder than π_{2}. \square
