Midterm Exam
 COSE215: Theory of Computation
 2023 Spring

Instructor: Jihyeok Park
April 24, 2023. 14:00-15:15

- If you are not good at English, please write your answers in Korean. (영어가 익숙하지 않은 경우, 답안을 한글로 작성해 주세요.)
- Write answers in good handwriting.

If we cannot recognize your answers, you will not get any points.
(글씨를 알아보기 힘들면 점수를 드릴 수 없습니다. 답안을 읽기 좋게 작성해주세요.)

- Write your answers in the boxes provided.
(답안을 제공된 박스 안에 작성해 주세요.)

Student ID	
Student Name	

Question:	1	2	3	4	5	6	7	Total
Points:	10	20	10	20	15	15	10	100
Score:								

1. A deterministic finite automaton (DFA) D is 5 -tuple:

$$
D=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

- Q is a finite set of states
- Σ is a finite set of symbols
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Consider the following DFA D described by a transition diagram:

(a) 4 points Fill in the blanks in the transition table of D.
(Note that \rightarrow indicates the initial state, and $*$ indicates a final state.)

$q_{i} \in Q$	0	1
\square	q_{0}	q_{0}
q_{1}	\square	\square
\square	q_{2}	\square
\square		

(b) 4 points The extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ of D is defined as:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$

Fill in the blanks in the results of the extended transition function δ^{*} of D.

$$
\delta^{*}\left(q_{0}, \epsilon\right)=\square \quad \delta^{*}\left(q_{0}, 1\right)=\square \quad \delta^{*}\left(q_{1}, 010\right)=\square \quad \delta^{*}\left(q_{2}, 00101\right)=\square
$$

(c) 2 points Describe the language accepted by D :

$$
L(D)=\{\square
$$

(Hint: you can use the notation $\mathbb{N}(w)$ which denotes the natural number equivalent to w in binary, allowing leading zeros. For example, $\mathbb{N}(1)=1, \mathbb{N}(101)=5, \mathbb{N}(000101)=5$, and $\mathbb{N}(000)=0$.)
2. Design a DFA using a transition diagram that accepts each of the following languages.
(a) 5 points $L=\left\{0^{k} \mid k \geq 2\right\}$
(b) 5 points $L=\left\{\mathrm{a} w \mathrm{~b} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$

(c) 5 points $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid N_{\mathrm{a}}(w) \equiv 1(\bmod 2) \wedge N_{\mathrm{b}}(w) \equiv 1(\bmod 2)\right\}$
(Note that $N_{\mathrm{a}}(w)$ and $N_{\mathrm{b}}(w)$ denotes the number of a and b in w, respectively. For example, $N_{\mathrm{a}}(\mathrm{abbab})=2$ and $N_{\mathrm{b}}(\mathrm{abbab})=3$.)
(d) 5 points $L=\left\{w \in\{0,1\}^{*} \mid \mathbb{N}(w) \equiv 2(\bmod 5)\right\}$.
(Note that $\mathbb{N}(w)$ represents the natural number equivalent to w in binary, allowing leading zeros. For example, $\mathbb{N}(1)=1, \mathbb{N}(101)=5, \mathbb{N}(000101)=5$, and $\mathbb{N}(000)=0$.)
\square
3. Consider the following ϵ-nondeterministic finite automaton (ϵ-NFA) N_{ϵ} :

$$
N_{\epsilon}=\left(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \delta, q_{0}, F=\left\{q_{2}, q_{4}\right\}\right)
$$

(a) 4 points Construct a DFA D using a transition table such that $L(D)=L\left(N_{\epsilon}\right)$ via the subset construction.
(Note that the states P in D should be the subsets of states Q in N_{ϵ}. And, \rightarrow indicates the initial state, and $*$ indicates a final state. Consider only reachable states of D when constructing the transition table.)

(b) 4 points Fill in the table in the left side using the table-filling algorithm, and define the equivalence classes P / \equiv in the right side using the result of the algorithm.

(c) 2 points Construct a minimized DFA D^{M} of D.
(Note that the states of D^{M} should be $P / \equiv=\left\{p_{0}^{\prime}, p_{1}^{\prime}\right\}$)
4. Write a regular expressions (RE) that represents each of the following languages:
(a) 4 points The language of the following DFA.

$$
R=\square
$$

(b) 4 points $L=\left\{(\mathrm{ab})^{n} \mathrm{c}^{m} \mid n, m \geq 0\right\}$.

$$
R=\square
$$

(c) 4 points The language of the following DFA.

$$
R=\square
$$

(d) 4 points $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an even number of 0^{\prime} 's $\}$.

$$
R=\square
$$

(e) 4 points $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+2 m \equiv 0(\bmod 3)\right\}$.

$$
R=\square
$$

5. Fill in the blanks in the proof showing that each of the following languages is not regular.
(a) 5 points $L=\left\{\mathrm{a}^{n} \mathrm{bc}^{n} \mid n \geq 0\right\}$.

We can prove L is not regular by using the pumping lemma for regular languages.

1. Assume that any positive integer n is given. (i.e., $n \geq 1$)
2. Pick a word $L \ni w=$
3. $|w|=$ \qquad $\geq n$.
4. Assume that any split $w=x y z$ satisfying (1) $|y|>0$ and (2) $|x y| \leq n$ is given.
5. Let $i=\square$. We need to show that $\neg(3) x y^{i} z \notin L$:
\square
(b) 10 points $L=\left\{\mathrm{a}^{p} \mid p\right.$ is a prime number $\}$.

We can prove L is not regular by using the pumping lemma for regular languages.

1. Assume that any positive integer n is given. (i.e., $n \geq 1$)
2. Pick a word $L \ni w=$
3. $|w|=\square \geq n$.
4. Assume that any split $w=x y z$ satisfying (1) $|y|>0$ and (2) $|x y| \leq n$ is given.
5. Let $i=$ \qquad . We need to show that $\neg(3) x y^{i} z \notin L$:
\square
6. Design a context-free grammar that represents each of the following languages.
(a) 5 points $L=L(R)$ where $R=\left(0 \mid 1\left(01^{*} 0\right)^{*} 1\right)^{*}$.
\square
(b) 5 points $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mathrm{c}^{m} \mathrm{~d}^{n} \mid n, m \geq 0\right\}$

(c) 5 points $L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid N_{\mathrm{a}}(w)=N_{\mathrm{b}}(w)-N_{\mathrm{c}}(w)\right\}$
7. 10 points True/False questions. Please answer \mathbf{O} for True and \mathbf{X} for False. (Note that each question is worth 1 points, but you will get -1 points for each wrong answer. So, if you are unsure about the answer, please leave it blank.)
8. The Kleene star of the empty language is the empty language.
9. Every regular language is context-free.
10. We can prove that a language is regular using the pumping lemma.
11. $L=\left\{w \in\left\{\varnothing, \varepsilon, \mathrm{a}, \mathrm{b}, \mid,,^{*}(,)\right\}^{*} \mid w\right.$ is a regular expression $\}$ is regular.
12. Regular languages are closed under the union but not under the intersection.
13. Regular languages are closed under the complement and the homomorphism.
14. We can construct two parse trees having the same yield for an ambiguous CFG.
15. All words in an ambiguous CFG have at least two left-most derivations.
16. We can always remove the ambiguity in a CFG.
17. Every CFG for an inherently ambiguous language is ambiguous.

