
Lecture 13 – Parse Trees and Ambiguity
COSE215: Theory of Computation

Jihyeok Park

2023 Spring

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 1 / 22

Recall

• A context-free grammar (CFG):

G = (V ,Σ,S ,P)

• The language of a CFG G :

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

• A language L is a context-free language (CFL):

∃ CFG G . L(G) = L

• For a given word w ∈ L(G), a derivation for w is S ⇒∗ w

• A sequence α ∈ (V ∪ Σ)∗ is a sentential form if S ⇒∗ α.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 2 / 22

Contents

1. Parse Trees
Definition
Yields
Relationship between Parse Trees and Derivations

2. Ambiguity
Ambiguous Grammars
Eliminating Ambiguity
Inherent Ambiguity

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 3 / 22

Parse Trees
Consider the following CFG for arithmetic expressions:

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

Two derivations and a parse tree for a sentential form N*X+N:

S ⇒ S+S
⇒ S*S+S
⇒ N*S+S
⇒ N*X+S
⇒ N*X+N

S ⇒ S+S
⇒ S+N
⇒ S*S+N
⇒ N*S+N
⇒ N*X+N

S

S

S

N

* S

X

+ S

N

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 4 / 22

Parse Trees
Consider the following CFG for arithmetic expressions:

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

Two derivations and a parse tree for a sentential form N*X+N:

S ⇒ S+S
⇒ S*S+S
⇒ N*S+S
⇒ N*X+S
⇒ N*X+N

S ⇒ S+S
⇒ S+N
⇒ S*S+N
⇒ N*S+N
⇒ N*X+N

S

S

S

N

* S

X

+ S

N

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 4 / 22

Parse Trees

Definition (Parse Trees)
For a given CFG G = (V ,Σ, S ,P), parse trees are trees satisfying:

1 The root node is labeled with the start variable S .
2 Each internal node is labeled with a variable A ∈ V .

If its children are labeled with:

X1,X2, · · · ,Xk

from the left to the right, then A → X1X2 · · ·Xk ∈ P .
3 Each leaf node is labeled with a variable, symbol, or ϵ. However, if a

leaf node is labeled with ϵ, it must be the only child of its parent.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 5 / 22

Parse Trees – Example 1: Arithmetic Expressions

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

A parse tree:
S

S

S

N

* S

X

+ S

N

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 6 / 22

Parse Trees – Example 2: Even Palindromes

S → ϵ | aSa | bSb

A parse tree:
S

a S

b S

ϵ

b

a

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 7 / 22

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

S

N

* S

X

+ S

N

Its yield is N*X+N.

S

a S

b S

ϵ

b

a

Its yield is abba.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 8 / 22

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

S

N

* S

X

+ S

N

Its yield is N*X+N.

S

a S

b S

ϵ

b

a

Its yield is abba.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 8 / 22

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

S

N

* S

X

+ S

N

Its yield is N*X+N.

S

a S

b S

ϵ

b

a

Its yield is abba.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 8 / 22

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

S

N

* S

X

+ S

N

Its yield is N*X+N.

S

a S

b S

ϵ

b

a

Its yield is abba.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 8 / 22

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

S

N

* S

X

+ S

N

Its yield is N*X+N.

S

a S

b S

ϵ

b

a

Its yield is abba.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 8 / 22

Relationship between Parse Trees and Derivations

Theorem (Parse Trees and Derivations)
For a given CFG G = (V ,Σ, S ,P), for any sequence α ∈ (V ∪ Σ)∗:

S ⇒∗ α ⇐⇒ ∃ parse tree T . s.t. T yields α

S ⇒ S+S
⇒ S*S+S
⇒ N*S+S
⇒ N*X+S
⇒ N*X+N

S

S

S

N

* S

X

+ S

N

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 9 / 22

Ambiguous Grammars

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

Actually, there are two distinct parse trees for a sentential form N*X+N:

S

S

N

* S

S

X

+ S

N

S

S

S

N

* S

X

+ S

N

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 10 / 22

Ambiguous Grammars

Definition (Ambiguous Grammar)
A context-free grammar G = (V ,Σ,S ,P) is ambiguous if there exist a
word w ∈ Σ∗ and two distinct parse trees for w . If not, G is unambiguous.

Theorem
Let G = (V ,Σ,S ,P) be a CFG. Then, the following numbers are equal for
any sequence of variables or symbols w ∈ (V ∪ Σ)∗:

1 The number of parse trees whose yields are w .
2 The number of left-most derivations for w .
3 The number of right-most derivations for w .

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 11 / 22

Ambiguous Grammars – Example

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

This grammar is ambiguous because there are two parse trees for
2 * x + 1:

S

S

S

N

2

* S

X

x

+ S

N

1

S

S

N

2

* S

S

X

x

+ S

N

1

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 12 / 22

Ambiguous Grammars – Example

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

There are two left-most derivations for 2 * x + 1:
1 Applying the production rule S → S+S first:

S
lm
==⇒ S+S lm

==⇒ S*S+S lm
==⇒ N*S+S lm

==⇒ 2*S+S
lm
==⇒ 2*X+S lm

==⇒ 2*x+S lm
==⇒ 2*x+N lm

==⇒ 2*x+1

2 Applying the production rule S → S*S first:

S
lm
==⇒ S*S lm

==⇒ N*S lm
==⇒ 2*S lm

==⇒ 2*S+S
lm
==⇒ 2*X+S lm

==⇒ 2*x+S lm
==⇒ 2*x+N lm

==⇒ 2*x+1

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 13 / 22

Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 14 / 22

Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 14 / 22

Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 14 / 22

Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 14 / 22

Eliminating Ambiguity
Now, the unique parse tree for 2 * x + 1 is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

S

S

T

T

F

N

2

* F

X

x

+ T

F

N

1

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 15 / 22

Eliminating Ambiguity
First, analyze why the original grammar is ambiguous.

S → N | X | S+S | S*S | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• The precedence of + and * is not specified.
• For example, two parse trees for 1 * 2 + 3 interpreted as:

1 * (2 + 3) and (1 * 2) + 3

• Let’s give * higher precedence than + to interpret it as (1 * 2) + 3.
• The associativity of + (or *) is not specified.

• For example, two parse trees for 1 + 2 + 3 interpreted as:

1 + (2 + 3) and (1 + 2) + 3

• Let’s give the left-associativity to + to interpret it as (1 + 2) + 3.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 16 / 22

Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F

• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 17 / 22

Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F

• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 17 / 22

Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F

• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 17 / 22

Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F

• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 17 / 22

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• This grammar supports the left-associativity of + and *. How?
• How to support the right-associativity of + and *?

S → T | T+S
T → F | F*T
· · ·

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 18 / 22

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• This grammar supports the left-associativity of + and *. How?

• How to support the right-associativity of + and *?
S → T | T+S
T → F | F*T
· · ·

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 18 / 22

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• This grammar supports the left-associativity of + and *. How?
• How to support the right-associativity of + and *?

S → T | T+S
T → F | F*T
· · ·

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 18 / 22

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• This grammar supports the left-associativity of + and *. How?
• How to support the right-associativity of + and *?

S → T | T+S
T → F | F*T
· · ·

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 18 / 22

Inherent Ambiguity
So far, we have discussed the ambiguity for grammars.
We will now discuss the inherent ambiguity for languages.

Definition (Inherent Ambiguity)
A language L is inherently ambiguous if all CFGs whose languages are L
are ambiguous. (i.e. there is no unambiguous grammar for L)

For example, the following language is inherently ambiguous:

L = {aibjck | i , j , k ≥ 0 ∧ (i = j ∨ j = k)}

An example of ambiguous grammar for L is:

S → L | R
L → A | Lc
A → ϵ | aAb
R → B | aR
B → ϵ | bBc

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 19 / 22

Midterm Exam

• Midterm exam will be given in class.
• Date: 14:00-15:15 (1 hour 15 minutes), April 24 (Mon.).
• Location: 302, Aegineung (애기능생활관)
• Coverage: Lectures 1 – 13
• Format: short- or long-answer questions, including proofs

• Closed book, closed notes
• No questions about Scala code in the midterm exam.

• Note that there is a lecture on April 26 (Wed.).

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 20 / 22

Summary

1. Parse Trees
Definition
Yields
Relationship between Parse Trees and Derivations

2. Ambiguity
Ambiguous Grammars
Eliminating Ambiguity
Inherent Ambiguity

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 21 / 22

Next Lecture

• Pushdown Automata (PDA)

Jihyeok Park
jihyeok_park@korea.ac.kr

https://plrg.korea.ac.kr

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 19, 2023 22 / 22

https://plrg.korea.ac.kr

	Parse Trees
	Definition
	Yields
	Relationship between Parse Trees and Derivations

	Ambiguity
	Ambiguous Grammars
	Eliminating Ambiguity
	Inherent Ambiguity

