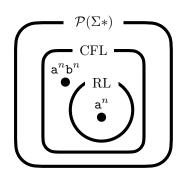
Lecture 15 – Examples of Pushdown Automata COSE215: Theory of Computation

Jihyeok Park

2023 Spring

A pushdown automaton (PDA) is a finite automaton with a stack.

- Acceptance by final states
- Acceptance by empty stacks



	Languages	Automata	Grammars
	Context-Free Language (CFL)	Pushdown Automata (PDA)	Context-Free Grammar (CFG)
	Regular Language (RL)	Finite Automata (FA)	Regular Expression (RE)

Contents

1. Examples of Pushdown Automata

Example 1: aⁿbⁿ Example 2: aⁿb²ⁿ Example 3: ww^R

Example 4: Equal Number of a's and b's Example 5: Unequal Number of a's and b's

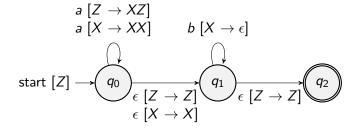
Example 6: Not of the Form ww

Example 1: aⁿbⁿ

$$L_F(P) = \{a^n b^n \mid n \ge 0\}$$

Example 1: aⁿbⁿ

$$L_F(P) = \{a^n b^n \mid n \ge 0\}$$

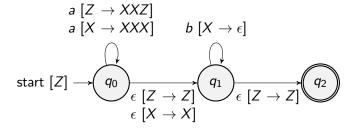


Example 2: a^nb^{2n}

$$L_F(P) = \{a^nb^{2n} \mid n \ge 0\}$$

Example 2: a^nb^{2n}

$$L_F(P) = \{a^n b^{2n} \mid n \ge 0\}$$



Example 3: ww^R

$$L_F(P) = \{ww^R \mid w \in \{a, b\}^*\}$$

Example 3: ww^R

$$L_{F}(P) = \{ww^{R} \mid w \in \{a,b\}^{*}\}$$

$$a [Z \to XZ]$$

$$a [X \to XX]$$

$$a [Y \to XY]$$

$$b [Z \to YZ]$$

$$b [X \to YX] \qquad a [X \to \epsilon]$$

$$b [Y \to YY] \qquad b [Y \to \epsilon]$$

$$\text{start } [Z] \xrightarrow{q_{0}} \underbrace{q_{1}}_{\epsilon} \underbrace{[Z \to Z]}_{\epsilon} \underbrace{q_{2}}_{\epsilon}$$

$$\epsilon [X \to X]$$

$$\epsilon [Y \to Y]$$

Example 4: Equal Number of a's and b's

Construct a PDA that accepts the language by empty stacks:

$$L_E(P) = \{ w \in \{ a, b \}^* \mid N_a(w) = N_b(w) \}$$

Example 4: Equal Number of a's and b's

Construct a PDA that accepts the language by empty stacks:

$$L_E(P) = \{ w \in \{ a, b \}^* \mid N_a(w) = N_b(w) \}$$

$$\begin{array}{c} a \ [Z \to PZ] \\ a \ [P \to PP] \\ a \ [N \to \epsilon] \\ b \ [Z \to NZ] \\ b \ [P \to \epsilon] \\ b \ [N \to NN] \\ \epsilon \ [Z \to \epsilon] \\ \end{array}$$

Example 5: Unequal Number of a's and b's

Construct a PDA that accepts the language by empty stacks:

$$L_E(P) = \{ w \in \{ \mathtt{a}, \mathtt{b} \}^* \mid N_\mathtt{a}(w) \neq N_\mathtt{b}(w) \}$$

Example 5: Unequal Number of a's and b's

Construct a PDA that accepts the language by empty stacks:

$$L_E(P) = \{ w \in \{ \mathtt{a}, \mathtt{b} \}^* \mid N_\mathtt{a}(w) \neq N_\mathtt{b}(w) \}$$

$$a [Z \to PZ]$$

$$a [P \to PP]$$

$$a [N \to \epsilon]$$

$$b [Z \to NZ] \qquad \epsilon [Z \to \epsilon]$$

$$b [P \to \epsilon] \qquad \epsilon [P \to \epsilon]$$

$$b [N \to NN] \qquad \epsilon [N \to \epsilon]$$
start $[Z] \xrightarrow{q_0} \overbrace{e [P \to \epsilon]}$

Example 6: Not of the Form ww

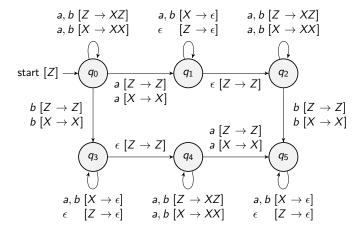
Construct a PDA that accepts the language by empty stacks:

$$L_E(P) = \{x \in \{a, b\}^* \mid x \text{ is not of the form } ww\}$$

Example 6: Not of the Form ww

Construct a PDA that accepts the language by empty stacks:

$$L_E(P) = \{x \in \{a,b\}^* \mid x \text{ is not of the form } ww\}$$



Summary

1. Examples of Pushdown Automata

Example 1: a^nb^n Example 2: a^nb^{2n} Example 3: ww^R

Example 4: Equal Number of a's and b's Example 5: Unequal Number of a's and b's

Example 6: Not of the Form ww

Next Lecture

• Equivalence of Pushdown Automata and Context-Free Grammars

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr