Lecture 18 - Normal Forms of Context-Free Grammars COSE215: Theory of Computation

Jihyeok Park

A)PLRG

2023 Spring

- A context-free grammar (CFG) is a 4-tuple:

$$
G=(V, \Sigma, S, R)
$$

where

- V : a finite set of variables (nonterminals)
- Σ : a finite set of symbols (terminals)
- $S \in V$: the start variable
- $R \subseteq V \times(V \cup \Sigma)^{*}$: a set of production rules.
- How to simplify a CFG?

Let's put it in Chomsky normal form (CNF)!

Definition (Chomsky Normal Form)

A CFG is in Chomsky normal form (CNF) if all productions are of the form for some $A, B, C \in V$ and $a \in \Sigma$:

$$
A \rightarrow B C \quad \text { OR } \quad A \rightarrow a
$$

(If $\epsilon \in L(G)$, then $S \rightarrow \epsilon$ is allowed with forbidden S on RHSs.)

$$
\begin{aligned}
& S \rightarrow 0 A B C|1 B| B B \\
& A \rightarrow A B B 0 \mid C \\
& B \rightarrow 0 B \mid 1 \\
& C \rightarrow C C \mid \epsilon \\
& D \rightarrow 1 D \mid A A
\end{aligned}
$$

Is it possible to put this CFG in CNF? Yes!

$$
\begin{array}{lll}
S \rightarrow X S_{1}|X B| Y B \mid B B & A \rightarrow A A_{1} \mid B A_{2} & B \rightarrow X B \mid 1 \\
S_{1} \rightarrow A B & A_{1} \rightarrow B A_{2} & X \rightarrow 0 \\
& A_{2} \rightarrow B X & Y \rightarrow 1
\end{array}
$$

Contents

1. Chomsky Normal Form (CNF)

Eliminating ϵ-Productions
Nullable Variables
Eliminating Unit Productions
Unit Pairs
Eliminating Useless Variables
Generating Variables
Reachable Variables
Putting CFG in CNF

Eliminating ϵ-Productions

Is it possible to eliminate ϵ-productions?

$$
A \rightarrow \epsilon
$$

However, it is impossible to eliminate when the language of the CFG contains the empty word (i.e., $\epsilon \in L(G)$).

Let's construct a new CFG G^{\prime} from G such that

$$
L\left(G^{\prime}\right)=L(G) \backslash\{\epsilon\}
$$

by eliminating ϵ-productions:
(1) Find all nullable variables.
(2) Construct a new CFG with productions produced by replacing nullable variables with ϵ in all combinations, except for the ϵ-production.

Nullable Variables

Definition (Nullable Variables)

For a given CFG $G=(V, \Sigma, S, R)$, a variable $A \in V$ is nullable if

$$
A \Rightarrow^{*} \epsilon
$$

We can inductively define the set of nullable variables:

- (Basis Case) If $A \rightarrow \epsilon \in R$, then A is nullable.
- (Induction Case) If $A \rightarrow X_{1} X_{2} \ldots X_{n} \in R$ and $X_{1}, X_{2}, \ldots, X_{n}$ are all nullable, then A is nullable.

Eliminating ϵ-Productions - Example

Consider the following CFG:

$$
\begin{aligned}
& S \rightarrow 0 A B C|1 B| B B \\
& A \rightarrow A B B 0 \mid C \\
& B \rightarrow 0 B \mid 1 \\
& C \rightarrow C C \mid \epsilon \\
& D \rightarrow 1 D \mid A A
\end{aligned}
$$

(1) Find all nullable variables: $\{A, C, D\}$
(2) Construct a new CFG with productions produced by replacing nullable variables with ϵ in all combinations, except for the ϵ-production:

$$
\begin{aligned}
& S \rightarrow 0 A B C|0 B C| 0 A B|0 B| 1 B \mid B B \\
& A \rightarrow A B B 0|B B 0| C \\
& B \rightarrow 0 B \mid 1 \\
& C \rightarrow C C \mid C \\
& D \rightarrow 1 D|1| A A \mid A
\end{aligned}
$$

Eliminating Unit Productions

Is it possible to eliminate unit productions?

$$
A \rightarrow B
$$

Yes, we can do it by following the steps below:
(1) Find all unit pairs.
(2) Construct a new CFG by adding all (recursively) possible non-unit productions of B to A for each unit pair (A, B).

Unit Pairs

Definition (Unit Pairs)

For a given CFG $G=(V, \Sigma, S, R)$, a pair of variables $(A, B) \in V \times V$ is a unit pair if

$$
A \Rightarrow^{*} B
$$

We can inductively define the set of unit pairs:

- (Basis Case) (A, A) is a unit pair for all $A \in V$.
- (Induction Case) If (A, B) is a unit pair and $B \rightarrow C \in R$, then (A, C) is a unit pair.

Eliminating Unit Productions - Example

After eliminating ϵ-productions:

$$
\begin{aligned}
& S \rightarrow O A B C|O B C| O A B|O B| 1 B \mid B B \\
& A \rightarrow A B B O|B B O| C \\
& B \rightarrow O B \mid 1 \\
& C \rightarrow C C \mid C \\
& D \rightarrow 1 D|1| A A \mid A
\end{aligned}
$$

(1) Find all unit pairs:

$$
\{(S, S),(A, A),(A, C),(B, B),(C, C),(D, D),(D, A),(D, C)\}
$$

(2) Construct a new CFG by adding all (recursively) possible non-unit productions of B to A for each unit pair (A, B) :

$$
\begin{aligned}
& S \rightarrow O A B C|O B C| O A B|O B| 1 B \mid B B \\
& A \rightarrow A B B O|B B O| C C \\
& B \rightarrow O B \mid 1 \\
& C \rightarrow C C \\
& D \rightarrow 1 D|1| A A|A B B O| B B O \mid C C
\end{aligned}
$$

Eliminating Useless Variables

What are useless variables?

- Non-generating variables: Variables that cannot derive any word.
- Unreachable variables: Variables unreachable from the start variable. Is it possible to eliminate useless variables?

Yes, we can do it by following the steps below:
(1) Find all generating variables.
(2) Find all reachable variables.
(3) Construct a new CFG by removing all productions that contain non-generating variables or come from unreachable variables.

Generating Variables

Definition (Generating Variables)

For a given CFG $G=(V, \Sigma, S, R)$, a variable $A \in V$ is a generating variable if for some $w \in \Sigma^{*}$,

$$
A \Rightarrow^{*} w
$$

We can inductively define the set of generating variables:

- (Basis Case) There is no basis case.
- (Induction Case) If $A \rightarrow \alpha \in R$ and α contains only symbols or generating variables, then A is a generating variable.

Reachable Variables

Definition (Reachable Variables)

For a given CFG $G=(V, \Sigma, S, R)$, a variable $A \in V$ is a reachable variable if there exists a derivation:

$$
S \Rightarrow^{*} \alpha A \beta
$$

We can inductively define the set of reachable variables:

- (Basis Case) The start variable S is reachable variable.
- (Induction Case) If $A \in V$ is a reachable variable and $A \rightarrow \alpha \in R$, then all variables in α are reachable variables.

Eliminating Useless Variables - Example

After eliminating ϵ-productions and unit productions:

$$
\begin{aligned}
& S \rightarrow O A B C|O B C| O A B|O B| 1 B \mid B B \\
& A \rightarrow A B B 0|B B 0| C C \\
& B \rightarrow O B \mid 1 \\
& C \rightarrow C C \\
& D \rightarrow 1 D|1| A A|A B B 0| B B 0 \mid C C
\end{aligned}
$$

(1) Find all generating variables: $\{S, A, B, D\}-C$ is non-generating.
(2) Find all reachable variables: $\{S, A, B, C\}-D$ is unreachable.
(3) Construct a new CFG by removing all productions that contain non-generating variables or come from unreachable variables:

$$
\begin{aligned}
& S \rightarrow 0 A B|0 B| 1 B \mid B B \\
& A \rightarrow A B B 0 \mid B B 0 \\
& B \rightarrow 0 B \mid 1
\end{aligned}
$$

Putting CFG in CNF

Our goal is to put a CFG in Chomsky normal form (CNF) consisting of:

$$
A \rightarrow B C \quad \text { OR } \quad A \rightarrow a
$$

(If $\epsilon \in L(G)$, then $S \rightarrow \epsilon$ is allowed with forbidden S on RHSs.)
We can put a CFG in CNF by following the steps below:
(1) If S on RHSs, add a new start variable S^{\prime} and a production $S^{\prime} \rightarrow S$.
(2) Eliminate ϵ-productions, unit productions, and useless variables.
(3) Arrange so that all RHSs whose length is greater than 1 consist only of variables. To do so, if terminal a appears in a RHS, then replace it with a new variable A and add a production $A \rightarrow a$.
(4) Replace all RHSs whose length is greater than 2 with a chain of variables. To do so, if $A \rightarrow X_{1} X_{2} \cdots X_{n}$ is a production with $n>2$, then replace it with a sequence of productions:

$$
A \rightarrow X_{1} A_{1} \quad A_{1} \rightarrow X_{2} A_{2} \quad \cdots \quad A_{n-2} \rightarrow X_{n-1} X_{n}
$$

(5) If ϵ is in the original CFG, add a production $S \rightarrow \epsilon$ (or $S^{\prime} \rightarrow \epsilon$).

Putting CFG in CNF - Example 1

(1) If S on RHSs, add a new start variable S^{\prime} and a production $S^{\prime} \rightarrow S$.
(2) Eliminate ϵ-productions, unit productions, and useless variables:

$$
\begin{aligned}
& S \rightarrow 0 A B|0 B| 1 B \mid B B \\
& A \rightarrow A B B 0 \mid B B 0 \\
& B \rightarrow 0 B \mid 1
\end{aligned}
$$

(3) Arrange so that all RHSs whose length >1 consist only of variables:

$$
\begin{array}{ll}
S \rightarrow X A B|X B| Y B \mid B B & X \rightarrow 0 \\
A \rightarrow A B B X \mid B B X & Y \rightarrow 1 \\
B \rightarrow X B \mid 1 &
\end{array}
$$

4. Replace all RHSs whose length >2 with a chain of variables:

$$
\begin{array}{lll}
S \rightarrow X S_{1}|X B| Y B \mid B B & A \rightarrow A A_{1} \mid B A_{2} & B \rightarrow X B \mid 1 \\
S_{1} \rightarrow A B & A_{1} \rightarrow B A_{2} & X \rightarrow 0 \\
& A_{2} \rightarrow B X & Y \rightarrow 1
\end{array}
$$

(5) If ϵ is in the original CFG, add a production $S \rightarrow \epsilon$ (or $S^{\prime} \rightarrow \epsilon$): No.

Putting CFG in CNF - Example 2

 Let's put the following CFG in CNF:$$
S \rightarrow a S b \mid \epsilon
$$

(1) If S on RHSs, add a new start variable S^{\prime} and a production $S^{\prime} \rightarrow S$.

$$
S^{\prime} \rightarrow S \quad S \rightarrow a S b \mid \epsilon
$$

(2) Eliminate ϵ-productions, unit productions, and useless variables:

$$
S^{\prime} \rightarrow a S b|a b \quad S \rightarrow a S b| a b
$$

(3) Arrange so that all RHSs whose length >1 consist only of variables:

$$
S^{\prime} \rightarrow A S B|A B \quad S \rightarrow A S B| A B \quad A \rightarrow a \quad B \rightarrow b
$$

(4) Replace all RHSs whose length >2 with a chain of variables:

$$
S^{\prime} \rightarrow A S_{1}\left|A B \quad S \rightarrow A S_{1}\right| A B \quad S_{1} \rightarrow S B \quad A \rightarrow a \quad B \rightarrow b
$$

(5) If ϵ is in the original CFG, add a production $S \rightarrow \epsilon$ (or $S^{\prime} \rightarrow \epsilon$): Yes.

$$
S^{\prime} \rightarrow \epsilon\left|A S_{1}\right| A B \quad S \rightarrow A S_{1} \mid A B \quad S_{1} \rightarrow S B \quad A \rightarrow a \quad B \rightarrow b
$$

Summary

1. Chomsky Normal Form (CNF)

Eliminating ϵ-Productions
Nullable Variables
Eliminating Unit Productions
Unit Pairs
Eliminating Useless Variables
Generating Variables
Reachable Variables
Putting CFG in CNF

Next Lecture

- Properties of Context-Free Languages

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

