Lecture 19 – Closure Properties of Context-Free Languages COSE215: Theory of Computation

Jihyeok Park

PLRG

2023 Spring

Recall

- A context-free language (CFL) is defined in three different ways:
 - A context free grammar (CFG)
 - A pushdown automaton (PDA) with final states
 - A pushdown automaton (PDA) with empty stacks
- We have learned that the class of **regular languages** is **closed** under various operations. (**Closure Properties**)
- For which operations is the class of **CFLs closed**?

Contents

1. Closure Properties of Context-Free Languages

Union Concatenation Kleene Star Homomorphism Reversal

2. Non-Closure Properties of Context-Free Languages

Intersection Complement and Difference

3. Closure Properties of CFLs with Regular Languages

Intersection with Regular Languages Difference with Regular Languages

The class of CFLs is **closed** under an *n*-ary operator op if and only if $op(L_1, \dots, L_n)$ is context-free for any CFLs L_1, \dots, L_n . We say that such properties are **closure properties** of CFLs.

The class of CFLs is closed under the following operations:

- Union
- Concatenation
- Kleene Star
- Homomorphism
- Reverse

Closure under Union

Theorem (Closure under Union)

If L_1 and L_2 are context-free languages, then so is $L_1 \cup L_2$.

Theorem (Closure under Union)

If L_1 and L_2 are context-free languages, then so is $L_1 \cup L_2$.

Proof) For given two CFLs L_1 and L_2 , we can always construct two CFGs:

$$G_1 = (V_1, \Sigma, S_1, R_1) G_2 = (V_2, \Sigma, S_2, R_2)$$

such that $L_1 = L(G_1)$ and $L_2 = L(G_2)$. Note that the variables of G_1 and G_2 should be disjoint. (i.e., $V_1 \cap V_2 = \emptyset$) Then, $L_1 \cup L_2$ is accepted by the CFG $G = (V, \Sigma, S, R)$ where:

- $V = V_1 \cup V_2 \cup \{S\}$
- S is a new start variable (i.e., $S \notin V_1 \cup V_2$)

•
$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$$

For example, consider the following two CFLs:

$$L_1 = \{ ab^n \mid n \ge 0 \}$$
 $L_2 = \{ ac^n \mid n \ge 0 \}$

Then, L_1 is accepted by:

$$S_1 o \mathtt{a} X = X o \mathtt{b} X \mid \epsilon$$

and L_2 is accepted by:

$$S_2
ightarrow a X = X
ightarrow c X \mid \epsilon$$

But, the same variable X is used in both grammars. So, we need to rename it to different variables, such as B and C.

For example, consider the following two CFLs:

$$L_1 = \{ ab^n \mid n \ge 0 \}$$
 $L_2 = \{ ac^n \mid n \ge 0 \}$

Then, L_1 is accepted by:

$$S_1
ightarrow \mathtt{a} B = B
ightarrow \mathtt{b} B \mid \epsilon$$

and L_2 is accepted by:

$$S_2
ightarrow aC$$
 $C
ightarrow cC \mid \epsilon$

For example, consider the following two CFLs:

$$L_1 = \{ ab^n \mid n \ge 0 \}$$
 $L_2 = \{ ac^n \mid n \ge 0 \}$

Then, L_1 is accepted by:

$$S_1
ightarrow \mathtt{a} B = B
ightarrow \mathtt{b} B \mid \epsilon$$

and L_2 is accepted by:

$$S_2 \rightarrow aC$$
 $C \rightarrow cC \mid \epsilon$

Then, $L_1 \cup L_2$ is accepted by the following CFG:

$$\begin{array}{ll} S & \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow {\tt a}B & B \rightarrow {\tt b}B \mid \epsilon \\ S_2 \rightarrow {\tt a}C & C \rightarrow {\tt c}C \mid \epsilon \end{array}$$

Closure under Concatenation

Theorem (Closure under Concatenation)

If L_1 and L_2 are context-free languages, then so is $L_1 \cdot L_2$.

Theorem (Closure under Concatenation)

If L_1 and L_2 are context-free languages, then so is $L_1 \cdot L_2$.

Proof) For given two CFLs L_1 and L_2 , we can always construct two CFGs:

$$G_1 = (V_1, \Sigma, S_1, R_1) G_2 = (V_2, \Sigma, S_2, R_2)$$

such that $L_1 = L(G_1)$ and $L_2 = L(G_2)$. Note that the variables of G_1 and G_2 should be disjoint. (i.e., $V_1 \cap V_2 = \emptyset$) Then, $L_1 \cdot L_2$ is accepted by the CFG $G = (V, \Sigma, S, R)$ where:

- $V = V_1 \cup V_2 \cup \{S\}$
- S is a new start variable (i.e., $S \notin V_1 \cup V_2$)
- $R = R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}$

For example, consider the following two CFLs:

$$L_1 = \{ ab^n \mid n \ge 0 \}$$
 $L_2 = \{ ac^n \mid n \ge 0 \}$

Then, L_1 is accepted by:

$$S_1
ightarrow \mathtt{a} B = B
ightarrow \mathtt{b} B \mid \epsilon$$

and L_2 is accepted by:

$$S_2 \rightarrow aC$$
 $C \rightarrow cC \mid \epsilon$

Then, $L_1 \cdot L_2$ is accepted by the following CFG:

$$\begin{array}{ll} S & \rightarrow S_1 S_2 \\ S_1 & \rightarrow aB \\ S_2 & \rightarrow aC \end{array} \quad \begin{array}{ll} B & \rightarrow bB \mid e \\ C & \rightarrow cC \mid e \end{array}$$

Closure under Kleene Star

Theorem (Closure under Kleene Star)

If L is a context-free language, then so is L^* .

Theorem (Closure under Kleene Star)

If L is a context-free language, then so is L^* .

Proof) For a given CFL *L*, we can always construct a CFG:

$$G = (V, \Sigma, S, R)$$

such that L = L(G). Then, L^* is accepted by the CFG $G' = (V', \Sigma, S', R')$ where:

•
$$V' = V \cup \{S'\}$$

- S' is a new start variable (i.e., $S' \notin V$)
- $R' = R \cup \{S' \rightarrow \epsilon, S' \rightarrow SS'\}$

Closure under Kleene Star – Example

For example, consider the following CFL:

$$L = \{ \mathtt{a}^n \mathtt{b}^n \mid n \ge 0 \}$$

Then, L is accepted by:

$${\cal S} o \epsilon \mid { t a} {\cal S} { t b}$$

Then, L^* is accepted by the following CFG:

$$egin{array}{lll} S'
ightarrow \epsilon \mid SS' \ S
ightarrow \epsilon \mid \mathbf{a}S\mathbf{b} \end{array}$$

11/27

Definition (Homomorphism)

Suppose Σ and Γ are two finite sets of symbols. Then, a function $h: \Sigma \to \Gamma^*$ is called a **homomorphism**. For a given word $w = a_1 a_2 \cdots a_n$,

$$h(w) = h(a_1)h(a_2)\cdots h(a_n)$$

For a language L, $h(L) = \{h(w) \mid w \in L\}$.

Definition (Homomorphism)

Suppose Σ and Γ are two finite sets of symbols. Then, a function $h: \Sigma \to \Gamma^*$ is called a **homomorphism**. For a given word $w = a_1 a_2 \cdots a_n$,

$$h(w) = h(a_1)h(a_2)\cdots h(a_n)$$

For a language L, $h(L) = \{h(w) \mid w \in L\}$.

For example, $h: \{0,1\} \rightarrow \{a,b\}^*$ be a homomorphism such that:

$$h(0) = ab$$
 $h(1) = a$

Then,

$$h(10) = aab$$
 $h(010) = abaab$ $h(1100) = aaabab$

Closure under Homomorphism

Theorem (Closure under Homomorphism)

If h is a homomorphism and L is a context-free language, then so is h(L).

Theorem (Closure under Homomorphism)

If h is a homomorphism and L is a context-free language, then so is h(L).

Proof) For a given CFL *L*, we can always construct a CFG:

$$G = (V, \Sigma, S, R)$$

such that L = L(G). Then, for a given homomorphism $h : \Sigma \to \Gamma^*$, h(L) is accepted by the CFG $G' = (V', \Gamma, S, R')$ where:

•
$$V' = V \cup \{X_a \mid a \in \Sigma\}$$

•
$$R' = \{Y \to Y'_1 \cdots Y'_n \mid Y \to Y_1 \cdots Y_n \in R\} \cup \{X_a \to h(a) \mid a \in \Sigma\}$$

where $\forall 1 \le i \le n$. $Y'_i = \begin{cases} Y_i & \text{if } Y_i \in V \\ X_a & \text{if } Y_i = a \in \Sigma \end{cases}$

Closure under Homomorphism – Example

$$L = \{ww^R \mid w \in \{0, 1\}^*\}$$

Then, *L* is accepted by:

$$S
ightarrow \epsilon \mid 0S0 \mid 1S1$$

If a homomorphism $h: \{0,1\} \rightarrow \{a,b\}^*$ is defined as follows:

$$h(0) = ab$$
 $h(1) = a$

Then, h(L) is accepted by the following CFG:

$$egin{array}{lll} S & o \epsilon \mid X_0 S X_0 \mid X_1 S X_1 \ X_0 & o$$
 ab $X_1 o$ a

Closure under Reverse

Theorem (Closure under Reverse)

If L is a context-free language, then so is L^R .

Closure under Reverse

Theorem (Closure under Reverse)

If L is a context-free language, then so is L^R .

Proof) For a given CFL *L*, we can always construct a CFG:

$$G = (V, \Sigma, S, R)$$

such that L = L(G). Then, L^R is accepted by the CFG $G' = (V, \Sigma, S, R')$ where:

•
$$R' = \{X \to \alpha^R \mid X \to \alpha \in R\}$$

Closure under Reverse – Example

For example, consider the following CFL:

$$L = \{(\texttt{ab})^n \texttt{c}^n \texttt{d}^m \mid n, m \ge 0\}$$

Then, L is accepted by:

$$egin{array}{c} S \ o X \mid S extsf{d} \ X \ o \epsilon \mid extsf{ab}X extsf{c} \end{array}$$

Then, L^R is accepted by the following CFG:

$$egin{array}{c} S \ o X \mid \mathrm{d}S \ X \ o \epsilon \mid \mathrm{c}X$$
ba

The class of CFLs is **closed** under an *n*-ary operator op if and only if $op(L_1, \dots, L_n)$ is context-free for any CFLs L_1, \dots, L_n . We say that such properties are **closure properties** of CFLs.

The class of CFLs is **NOT** closed under the following operations:

- Intersection
- Complement
- Difference

The class of CFLs is **closed** under an *n*-ary operator op if and only if $op(L_1, \dots, L_n)$ is context-free for any CFLs L_1, \dots, L_n . We say that such properties are **closure properties** of CFLs.

The class of CFLs is **NOT** closed under the following operations:

- Intersection
- Complement
- Difference

We will prove it by using the fact that the following language is not a CFL:

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

The class of CFLs is **closed** under an *n*-ary operator op if and only if $op(L_1, \dots, L_n)$ is context-free for any CFLs L_1, \dots, L_n . We say that such properties are **closure properties** of CFLs.

The class of CFLs is **NOT** closed under the following operations:

- Intersection
- Complement
- Difference

We will prove it by using the fact that the following language is not a CFL:

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

We will learn how to prove that L is not a CFL in the next lecture (Pumping Lemma for CFLs).

Non-Closure under Intersection

Theorem (Non-Closure under Intersection)

The class of CFLs is **NOT** closed under intersection.

Non-Closure under Intersection

Theorem (Non-Closure under Intersection)

The class of CFLs is **NOT** closed under intersection.

Proof) Consider the following two languages:

 $L_1 = \{ \mathtt{a}^n \mathtt{b}^n \mathtt{c}^m \mid n, m \ge 0 \} \qquad L_2 = \{ \mathtt{a}^m \mathtt{b}^n \mathtt{c}^n \mid n, m \ge 0 \}$

Then, L_1 is accepted by:

$$S_1 o X \mid S_1$$
c $X o \epsilon \mid$ aXb

and L_2 is accepted by:

$$S_2
ightarrow Y \mid aS_2 \qquad Y
ightarrow \epsilon \mid bYc$$

Thus, they are both CFLs. However, their intersection is not a CFL:

$$L_1 \cap L_2 = \{ \mathtt{a}^n \mathtt{b}^n \mathtt{c}^n \mid n \ge 0 \}$$

Theorem (Non-Closure under Complement)

The class of CFLs is NOT closed under complement.

Theorem (Non-Closure under Complement)

The class of CFLs is **NOT** closed under complement.

Proof) Assume that the class of CFLs is closed under complement. Then, for any two CFLs L_1 and L_2 , $L_1 \cap L_2$ is also a CFL:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

However, we have already proved that the class of CFLs is not closed under intersection. Thus, the class of CFLs is not closed under complement. $\hfill\square$

Theorem (Non-Closure under Complement)

The class of CFLs is **NOT** closed under complement.

Proof) Assume that the class of CFLs is closed under complement. Then, for any two CFLs L_1 and L_2 , $L_1 \cap L_2$ is also a CFL:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

However, we have already proved that the class of CFLs is not closed under intersection. Thus, the class of CFLs is not closed under complement. $\hfill\square$

Theorem (Non-Closure under Difference)

The class of CFLs is **NOT** closed under difference.

Theorem (Non-Closure under Complement)

The class of CFLs is **NOT** closed under complement.

Proof) Assume that the class of CFLs is closed under complement. Then, for any two CFLs L_1 and L_2 , $L_1 \cap L_2$ is also a CFL:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

However, we have already proved that the class of CFLs is not closed under intersection. Thus, the class of CFLs is not closed under complement. $\hfill\square$

Theorem (Non-Closure under Difference)

The class of CFLs is **NOT** closed under difference.

Proof) Similarly, we can prove it using the following fact:

$$L_1 \cap L_2 = L_1 \setminus (L_1 \setminus L_2)$$

Closure Properties of CFLs with Regular Languages

Definition (Closure Properties)

The class of CFLs is **closed** under an *n*-ary operator op if and only if $op(L_1, \dots, L_n)$ is context-free for any CFLs L_1, \dots, L_n . We say that such properties are **closure properties** of CFLs.

The class of CFLs is closed under the following operations with RLs:

- Intersection
- Difference

Closure under Intersection with RLs

Theorem (Closure under Intersection with RLs)

If L_1 is a CFL and L_2 is a RL, then $L_1 \cap L_2$ is a CFL.

Closure under Intersection with RLs

Theorem (Closure under Intersection with RLs)

If L_1 is a CFL and L_2 is a RL, then $L_1 \cap L_2$ is a CFL.

There exists a PDA *P* that accepts L_1 by final states and a DFA *D* that accepts L_2 . We will construct a PDA *P'* that accepts $L_1 \cap L_2$ as follows:

COSE215 @ Korea University

Closure under Intersection with RLs

PLRG

Theorem (Closure under Intersection with RLs)

If L_1 is a CFL and L_2 is a RL, then $L_1 \cap L_2$ is a CFL.

Proof) Consider a PDA $P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z, F_P)$ and a DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ such that:

$$L_F(P) = L_1 \qquad L(D) = L_2$$

Then, $L_1 \cap L_2$ is accepted by the PDA $P' = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$ by final states, where:

- $Q = Q_P \times Q_D$
- $\delta((p,q),\epsilon,X) = \{((p',q),\alpha) \mid (p',\alpha) \in \delta_P(p,\epsilon,X)\}$
- $\delta((p,q),a,X) = \{((p',q'),\alpha) \mid (p',\alpha) \in \delta_P(p,a,X) \land q' = \delta_D(q,a)\}$
- $q_0 = (q_P, q_D)$
- $F = F_P \times F_D$

Closure under Intersection with RLs - Example

For example, consider the following PDA P and DFA D:

Closure under Intersection with RLs - Example

For example, consider the following PDA P and DFA D:

Then, a PDA P' that accepts $L_F(P) \cap L(D)$ by the final states can be constructed as follows:

Closure under Difference with RLs

Theorem (Closure under Difference with RLs)

If L_1 is a CFL and L_2 is a RL, then $L_1 \setminus L_2$ is a CFL.

Closure under Difference with RLs

Theorem (Closure under Difference with RLs)

If L_1 is a CFL and L_2 is a RL, then $L_1 \setminus L_2$ is a CFL.

Proof) We know the following fact:

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Since the class of RLs is closed under complement, $\overline{L_2}$ is a RL. In addition, we know that the class of CFLs is closed under intersection with RLs. Thus, $L_1 \setminus L_2$ is a CFL.

Closure under Difference with RLs – Example

For example, consider the following PDA P and DFA D:

Closure under Difference with RLs – Example

For example, consider the following PDA P and DFA D:

Then, a DFA \overline{D} that accepts $\overline{L(D)}$ and a PDA P' that accepts $L_F(P) \setminus L(D) = L_F(P) \cap \overline{L(D)}$ can be constructed as follows:

Closure under Difference with RLs – Example

For example, consider the following PDA P and DFA D:

Then, a DFA \overline{D} that accepts $\overline{L(D)}$ and a PDA P' that accepts $L_F(P) \setminus L(D) = L_F(P) \cap \overline{L(D)}$ can be constructed as follows:

Summary

1. Closure Properties of Context-Free Languages

Union Concatenation Kleene Star Homomorphism Reversal

2. Non-Closure Properties of Context-Free Languages

Intersection Complement and Difference

3. Closure Properties of CFLs with Regular Languages

Intersection with Regular Languages Difference with Regular Languages

Next Lecture

• The Pumping Lemma for Context-Free Languages

Jihyeok Park jihyeok_park@korea.ac.kr https://plrg.korea.ac.kr