Lecture 23 – Extensions of Turing Machines COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

- A Turing machine (TM) is a finite automaton with a tape.
- A language accepted by a TM is Recursively Enumerable.
- What happens if we define other extensions of TMs?
- Are they more powerful than TMs? NO!!

Contents

1. Extensions of Turing Machines

TMs with Storage
Multi-track TMs
Multi-tape TMs
Non-deterministic TMs
More Extensions of TMs

TMs with Storage

We can define a TM with a storage:

It has additional storage affecting the transition function:

$$\delta: Q \times \Gamma \times \Gamma \rightharpoonup Q \times \Gamma \times \Gamma \times \{L, R\}$$

TMs with Storage - Example

$$L(M) = \{ab^n \text{ or } ba^n \mid n \ge 0\}$$

The following TM with storage accepts L(M), and see the example for $abb \in L(M)$.¹

¹https://plrg.korea.ac.kr/courses/cose215/materials/tm-storage-abn-or-ban.pdf

TMs with Storage are Equivalent to TMs

Theorem

A language accepted by a TM with storage is recursively enumerable (i.e., accepted by a standard TM).

Proof) We can define an equivalent standard TM by using pairs of states and symbols in the storage as its states:

$$\delta'((q,a),b)=\delta(q,a,b)$$

where $Q' = Q \times \Gamma$ and $\delta' : Q' \times \Gamma \rightharpoonup Q' \times \Gamma \times \{L, R\}$. For example,

Multi-track TMs

We can define a TM with a multi-track tape:

It has a tape with *n* tracks and a single tape head:

$$\delta: Q \times \Gamma^n \rightharpoonup Q \times \Gamma^n \times \{L, R\}$$

Multi-track TMs – Example

$$L(M) = \{a^n b^n c^n \mid n \ge 0\}$$

The following multi-track TM accepts L(M), and see the example for $aabbcc \in L(M)$.²

²https://plrg.korea.ac.kr/courses/cose215/materials/tm-multi-track-an-bn-cn.pdf

Multi-track TMs are Equivalent to Standard TMs

Theorem

A language accepted by a multi-track TM is recursively enumerable (i.e., accepted by a standard TM).

Proof) We can define an equivalent standard TM by using *n*-tuples of symbols as a single symbol:

$$\delta'(q,\alpha) = \delta(q,\alpha)$$

where $\Gamma' = \Gamma^n$ and $\delta' : Q \times \Gamma' \rightharpoonup Q \times \Gamma' \times \{L, R\}$. For example,

 В	a	b	В	
 В	Χ	В	В	

$\cdots \mid (B, B) \mid (a, X) \mid (b, B) \mid (B, B) \mid \cdots$					
	(B, B)	(a, X)	(b, B)	(B, B)	

Multi-tape TMs

We can define a TM with multiple tapes:

It has *n* tapes, and each tape has its **own head** that can move independently:

$$\delta: Q \times \Gamma^n \rightharpoonup Q \times (\Gamma \times \{L, R\})^n$$

Multi-tape TMs – Example

$$L(M) = \{wcw^R \mid w \in \{a, b\}^*\}$$

The following multi-tape TM accepts L(M), and see the example for abbcbba $\in L(M)$.³

³https://plrg.korea.ac.kr/courses/cose215/materials/tm-multi-tape-w-c-wr.pdf

Multi-tape TMs are Equivalent to Standard TMs

Theorem

A language accepted by a multi-tape TM is recursively enumerable (i.e., accepted by a standard TM).

Proof) For a given *n*-tape TM, we can define an equivalent 2*n*-track TM with storage by using **odd** tracks for the original **tapes** and **even** tracks for the **tape heads**:

We can simulate one-step in the n-tape TM by gathering all the symbols pointed by the n heads into the storage, and then taking the action same as done by the n-tape TM.

Non-deterministic TMs

We can define a TM with non-deterministic transitions:

It has a non-deterministic transition function:

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

Non-deterministic TMs – Example

$$L(M) = \{ww^R \mid w \in \{a, b\}^*\}$$

The following multi-tape TM accepts L(M), and see the example for abba $\in L(M)$.⁴

⁴https://plrg.korea.ac.kr/courses/cose215/materials/ntm-w-wr.pdf

Non-deterministic TMs are Equivalent to Standard TAPLRG

Theorem

A language accepted by a non-deterministic TM is recursively enumerable (i.e., accepted by a standard TM).

Proof) For a given non-deterministic TM, we can define an equivalent 2-tape TM: 1) a 2-track tape to maintain a **queue of configurations** and 2) a normal track to **simulate** the tape of the original TM.

More Extensions of TMs

- There are more extensions of TMs:
 - TMs with **Stay Option** L: Left, R: Right, and S: **Stay**
 - Queue Automata Automata with Queue
 - Random Access Machines TMs with Random Access Memory
 - . . .
- They are all equivalent to TMs.
- A standard TM is the most powerful model of computation.

Summary

1. Extensions of Turing Machines

TMs with Storage
Multi-track TMs
Multi-tape TMs
Non-deterministic TMs
More Extensions of TMs

Next Lecture

• The Origin of Computer Science

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr