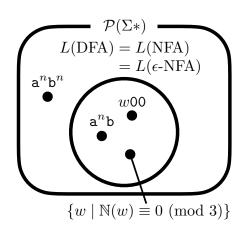
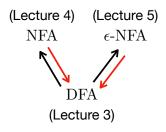
Lecture 6 – Regular Expressions and Languages COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall





→: Subset Construction

Contents

1. Operations in Languages

Union

Concatenation

Kleene Star

2. Regular Expressions

Definition

Language of Regular Expressions

Extended Regular Expressions

Examples

Operations in Languages

• The union of languages:

$$L_1 \cup L_2$$

• The concatenation of languages:

$$L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$

• The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

Operations in Languages

• The union of languages:

$$L_1 \cup L_2$$

• The concatenation of languages:

$$L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$

• The Kleene star of a language:

$$\begin{split} L^* &= L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \geq 0} L^n \\ L_1 &= \{\mathtt{a}^n \mid n \geq 0\} \qquad L_2 = \{\mathtt{b}^n \mid n \geq 0\} \end{split}$$

Operations in Languages

• The union of languages:

$$L_1 \cup L_2$$

• The concatenation of languages:

$$L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$

• The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

$$L_1 = \{ \mathbf{a}^n \mid n \ge 0 \} \qquad L_2 = \{ \mathbf{b}^n \mid n \ge 0 \}$$

$$L_1 \cup L_2 = \{ \mathbf{a}^n \text{ or } \mathbf{b}^n \mid n \ge 0 \}$$

$$L_1 \cdot L_2 = \{ \mathbf{a}^n \mathbf{b}^m \mid n, m \ge 0 \}$$

$$L_1^* = L_1 = \{ \mathbf{a}^n \mid n > 0 \}$$

Definition of Regular Expressions

Definition (Regular Expressions)

A **regular expression** over a set of symbols Σ is inductively defined as follows:

- (Basis Case) \emptyset , ϵ , and $a \in \Sigma$ are regular expressions.
- (Induction Case) If R_1 and R_2 are regular expressions, then so are $R_1 \mid R_2, R_1 \cdot R_2, R^*$, and (R).

```
\begin{array}{cccc} R & ::= & \varnothing & & (\mathsf{Empty}) \\ & \mid & \epsilon & & (\mathsf{Epsilon}) \\ & \mid & a & & (\mathsf{Symbol}) \\ & \mid & R \mid R & (\mathsf{Union}) \\ & \mid & R \cdot R & (\mathsf{Concatenation}) \\ & \mid & R^* & (\mathsf{Kleene Star}) \\ & \mid & (R) & (\mathsf{Parentheses}) \end{array}
```

Definition of Regular Expressions

Definition (Regular Expressions)

A **regular expression** over a set of symbols Σ is inductively defined as follows:

- (Basis Case) \varnothing , ϵ , and $a \in \Sigma$ are regular expressions.
- (Induction Case) If R_1 and R_2 are regular expressions, then so are $R_1 \mid R_2, R_1 \cdot R_2, R^*$, and (R).


```
// The type definitions of symbols
type Symbol = Char
// The definition of regular expressions
trait RE
case class REEmpty() extends RE
case class REEpsilon() extends RE
case class RESymbol(symbol: Symbol) extends RE
case class REUnion(left: RE, right: RE) extends RE
case class REConcat(left: RE, right: RE) extends RE
case class REStar(re: RE) extends RE
case class REParen(re: RE) extends RE
// Two examples of regular expressions
val re1: RE = REUnion(
 RESymbol('a').
 REConcat(REEpsilon(), REStar(RESymbol('b'))),
val re2: RE = REConcat(
 REParen(REUnion(RESymbol('a'), REEpsilon())),
 REStar(RESymbol('b')),
```


Definition (Language of Regular Expressions)

For a given regular expression R on a set of symbols Σ , the **language** L(R) of R is inductively defined as follows:

$$L(\varnothing) = \varnothing \qquad L(R_1 \mid R_2) = L(R_1) \cup L(R_2)$$

$$L(\epsilon) = \{\epsilon\} \qquad L(R_1 \cdot R_2) = L(R_1) \cdot L(R_2)$$

$$L(a) = \{a\} \qquad L(R^*) = L(R)^*$$

$$L((R)) = L(R)$$

Language of Regular Expressions

Definition (Language of Regular Expressions)

For a given regular expression R on a set of symbols Σ , the **language** L(R) of R is inductively defined as follows:

$$L(\varnothing) = \varnothing \qquad L(R_1 \mid R_2) = L(R_1) \cup L(R_2)$$

$$L(\epsilon) = \{\epsilon\} \qquad L(R_1 \cdot R_2) = L(R_1) \cdot L(R_2)$$

$$L(a) = \{a\} \qquad L(R^*) = L(R)^*$$

$$L((R)) = L(R)$$

$$L(\mathbf{a} \mid \epsilon \cdot \mathbf{b}^*) = L(\mathbf{a}) \cup L(\epsilon \cdot \mathbf{b}^*) = \{\mathbf{a}\} \cup \{\epsilon\} \cdot L(\mathbf{b})^* = \{\mathbf{a}\} \cup \{\epsilon\} \cdot \{\mathbf{b}\}^* = \{\mathbf{a}\} \cup \{\mathbf{b}\}^* = \{\mathbf{a}\} \cup \{\mathbf{b}\}^* = \{\mathbf{a} \text{ or } \mathbf{b}^n \mid n \ge 0\}$$

$$L((\mathbf{a} \mid \epsilon) \cdot \mathbf{b}^*) = L((\mathbf{a} \mid \epsilon)) \cdot L(\mathbf{b}^*) = L(\mathbf{a} \mid \epsilon) \cdot L(\mathbf{b})^* = \{\mathbf{a} \text{ or } \mathbf{b}^n \mid n \ge 0\}$$

Extended Regular Expressions

More operators:

$$R ::= \cdots$$
 $| R^+ \text{ (Kleene plus)}$
 $| R^? \text{ (Optional)}$

Extended Regular Expressions

More operators:

$$R ::= \cdots$$
 $\mid R^+ \text{ (Kleene plus)}$
 $\mid R^? \text{ (Optional)}$

Actually, they are just syntactic sugar for the existing operators:

$$L(R^+) = L(RR^*) = L(R) \cdot L(R^*)$$

 $L(R^?) = L(R | \epsilon) = L(R) \cup L(\epsilon)$

Extended Regular Expressions

More operators:

$$R ::= \cdots$$
 $\mid R^+ \text{ (Kleene plus)}$
 $\mid R^? \text{ (Optional)}$

Actually, they are just syntactic sugar for the existing operators:

$$L(R^+) = L(RR^*) = L(R) \cdot L(R^*)$$

 $L(R^?) = L(R | \epsilon) = L(R) \cup L(\epsilon)$

For examples,

$$\begin{array}{lcl} L(\mathbf{a}^+) & = & L(\mathbf{a}\mathbf{a}^*) = L(\mathbf{a}) \cdot L(\mathbf{a}^*) = \{\mathbf{a}\} \cdot \{\mathbf{a}\}^* = \{\mathbf{a}^n \mid n \geq 1\} \\ \\ L(\mathbf{b}^?) & = & L(\mathbf{b} \mid \epsilon) = L(\mathbf{b}) \cup L(\epsilon) = \{\mathbf{b}\} \cup \{\epsilon\} = \{\mathbf{b}, \epsilon\} \end{array}$$

• $L = \{\epsilon, a\}$

- $L = \{w \in \{0,1\}^* \mid w \text{ contains at least two } 0's\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains exactly two } 0's\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ has three consecutive } 0's\}$
- $L = \{w \in \{a, b\}^* \mid a \text{ and b alternate in } w\}$

- $L = \{a^nb^m \mid n \geq 3 \land m \equiv 0 \pmod{2}\}$
- $L = \{a^nb^m \mid n+m \equiv 0 \pmod{2}\}$
- $L = \{w \in \{0,1\}^* \mid \text{ the number of 0's is divisible by 3}\}$
- $L = \{w \in \{0,1\}^* \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is a natural number represented by w.

- $L = \{a^nb^m \mid n \geq 3 \land m \equiv 0 \pmod{2}\}$
- $L = \{a^nb^m \mid n+m \equiv 0 \pmod{2}\}$
- $L = \{w \in \{0,1\}^* \mid \text{ the number of 0's is divisible by 3}\}$
- $L = \{w \in \{0,1\}^* \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is a natural number represented by w.

$$(0|1(01*0)*1)*$$

• $L = \{a^n b^n \mid n \ge 0\}$

- $L = \{a^n b^m \mid n \geq 3 \land m \equiv 0 \pmod{2}\}$
- $L = \{a^nb^m \mid n+m \equiv 0 \pmod{2}\}$
- $L = \{w \in \{0,1\}^* \mid \text{ the number of 0's is divisible by 3}\}$
- $L = \{w \in \{0,1\}^* \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is a natural number represented by w.

$$(0|1(01*0)*1)*$$

• $L = \{a^n b^n \mid n \ge 0\}$ – IMPOSSIBLE (# RE R. L(R) = L)

Exercise #1

- Please see
 https://github.com/ku-plrg-classroom/docs/tree/main/fa-examples.
- You don't have to submit it. This is just exercise for your practice.
- The goal is to implement the finite automata (FA) objects in the Implementation.scala file.

Summary

1. Operations in Languages

Union

Concatenation

Kleene Star

2. Regular Expressions

Definition

Language of Regular Expressions

Extended Regular Expressions

Examples

Next Lecture

• Equivalence of Regular Expressions and Finite Automata

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr