Problem 1

A Fibonacci sequence is a sequence of integers in which each number is the sum of the two preceding ones. The sequence is like:

$$
0,1,1,2,3,5,8,13,21 \ldots
$$

Formally, the Fibonacci sequence is defined as follows.

$$
\begin{aligned}
& F_{0}=0, F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \quad(\text { for } n \geq 2)
\end{aligned}
$$

Problem 1.1

Prove the following theorem.

$$
\sum_{i=1}^{n} F_{i}=F_{n+2}-1
$$

Solution 1.1

(Base case) For $n=1, F_{1}=1=2-1=F_{3}-1$.
(Inductive case) Let inductive hypothesis(I.H) holds for $n=k(n \geq 1)$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} F_{i} & =\sum_{i=1}^{k}+F_{k+1} \\
& =F_{k+2}-1+F_{k+1} \\
& =F_{k+3}-1
\end{aligned}
$$

Thus I.H holds for $n=k+1$. Proved by a induction on integers.

Problem 1.2

Prove the following theorem.

$$
\sum_{i=1}^{n+1} F_{i}^{2}=F_{n+1} F_{n+2}
$$

Solution 1.2

(Base case) For $n=0, F_{1}^{2}=F_{1} F_{2}=1$.
(Inductive case) Let inductive hypothesis(I.H) holds for $n=k(n \geq 0)$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+2} F_{i}^{2} & =\sum_{i=1}^{k+1} F_{i}^{2}+F_{k+2}^{2} \\
& =F_{k+1} F_{k+2}+F_{k+2}^{2} \\
& =F_{k+2}\left(F_{k+1}+F_{k+2}\right) \\
& =F_{k+2} F_{k+3}
\end{aligned}
$$

Thus I.H holds for $n=k+1$. Proved by a induction on integers.

Problem 2

A parentheses string p is a string(possibly empty) consisting of opening parenthesis ' (' and closing parenthesis ')'. Also, each opening parenthesis should have a proper closing pair. For example, below are the parentheses string:

- ()
- (()) ()
- ((())))

Otherwise, below are not:

- (()
- (()))(

Problem 2.1

Obviously, a set of parentheses strings is the language. Give a precise mathematical definition of this language.

Solution 2.1

We write a concatenate of two strings s_{1} and s_{2} as $s_{1} \| s_{2}$.
The language of the parentheses strings L is defined as a smallest set meets conditions below:
(Base case) An empty string $\epsilon \in L$.
(Inductive case 1) If $s \in L$, then ' $('\|s\| ')^{\prime} \in L$.
(Inductive case 2) If $s_{1} \in L$ and $s_{2} \in L$, then $s_{1} \| s_{2} \in L$.
Note: You may define the language using a property of prefixes of the string, but it is burden.

Problem 2.2

Let L be the language defined in Problem 2.1. We define a new language K with

$$
s_{1} s_{2} \ldots s_{n} \in L \Longleftrightarrow \overline{s_{1} s_{2} \ldots s_{n}} \in K
$$

when \bar{s} is a conjugate of s; for example, $\overline{()(())}=)())(($.
Prove or disprove that $L=K^{R}$.

Solution 2.2

We prove that $L=K^{R}$.
Proof. We depends on the induction. Also we abuse a notation s^{R} for reversed s.
(Base case) $\epsilon \in K^{R}$ is trivial.
(Inductive case 1)
If '($\quad\|s\|$ ')' $\in L$, then ')' $\|\bar{s}\|$ ' $\left(' \in K\right.$. Thus ' $\left('\left\|\bar{s}^{R}\right\|\right.$ ')' $\in K^{R}$.
(Inductive case 2) If $s_{1} \in L$ and $s_{2} \in L$, then $\overline{s_{1}} \| \overline{s_{2}} \in K$. Thus ${\overline{s_{2}}}^{R} \|{\overline{s_{2}}}^{R} \in K^{R}$. Thus for $K^{R}=\left\{\bar{s}^{R} \mid s \in L\right\}$, all conditions of the parentheses string holds. However it is trivial that $|L|=\left|K^{R}\right|$, therefore those are the same.

Problem 3

A directed graph is a pair $G=(V, E)$, where V is a set whose elements are called vertices, and E is a set of ordered pairs (x, y) of distinct vertices, formally,

$$
E \subseteq\{(x, y) \mid(x, y) \in V \times V \wedge x \neq y\}
$$

Figure 1: $V=\{A, B, C, D\}$ and $E=\{(A, B),(A, C),(B, D),(B, C),(C, D)\}$.
Hint: You may refer to the inductive definition of the directed graph.
Let (V, E) is a directed graph.
(Base case) $(\varnothing, \varnothing)$ is a directed graph.
(Inductive case 1) For $v \notin V,(V \cup\{v\}, E)$ is a directed graph.
(Inductive case 2) For $(x, y) \notin E,(V, E \cup\{(x, y)\})$ is a directed graph when $x \neq y$ and $x, y \in V$.

Problem 3.1

The possible number of different directed graphs of n vertices is $2^{n(n-1)}$. Prove it by induction(on integers).

Solution 3.1

(Base case) $|\{(\varnothing, \varnothing)\}|=1$
(Inductive case) Let I.H holds for $n=k$. For a digraph $G=(V, E)$ and $\left|G^{\prime}\right|=k+1$, let $G^{\prime}=\left(V \cup\{v\}, E \cup E^{\prime}\right)$ while $v \notin V$ and $\forall(x, y) \in E^{\prime} .(x=v \vee y=v) \wedge x \neq y$. It's trivial that $E \cap E^{\prime}=\varnothing$ and it is a equivalent condition for valid $E^{\prime} .\left|\mathcal{P}\left(E^{\prime}\right)\right|=2^{2 k}$, thus $2^{k(k-1)} \cdot 2^{2 k}=2^{k(k+1)}$.
Thus I.H holds for $n=k+1$. Proved by a induction on integers.

Problem 3.2

Let $\operatorname{in}(x)$ of the vertex x be the number of edges pointing to it, and out (x) is the number of edges starting from it. For example, $\operatorname{in}(B)=1$ and $\operatorname{out}(B)=2$. Prove or disprove the theorem below using a structural induction or giving a counterproof.

$$
\forall G=(V, E) . \sum_{v \in V} \operatorname{in}(v)=\sum_{v \in V} \operatorname{out}(v)
$$

Solution 3.2

(Base case) Trivial for $(\varnothing, \varnothing)$.
(Inductive case 1) For $(V \cup\{v\}, E)$, in $(v)=\operatorname{out}(v)=0$. Use I.H.
(Inductive case 2) Consider $(x, y) \notin E, G^{\prime}=(V, E \cup\{(x, y)\})$ when $x \neq y$ and $x, y \in V$. Then $\sum_{v \in V} \operatorname{in}(v)$ of G^{\prime} increases by 1 , since $\sum_{v \in V-\{y\}} \operatorname{in}(v)$ is same and in (y) increases by 1 . In the same way, out (x) increases by 1 .

Now it's proved by a induction.

