Final Exam

COSE215: Theory of Computation
 2024 Spring

Instructor: Jihyeok Park
June 19, 2024. 13:30-14:45

- If you are not good at English, please write your answers in Korean. (영어가 익숙하지 않은 경우, 답안을 한글로 작성해 주세요.)
- Write answers in good handwriting.

If we cannot recognize your answers, you will not get any points.
(글씨를 알아보기 힘들면 점수를 드릴 수 없습니다. 답안을 읽기 좋게 작성해주세요.)

- Write your answers in the boxes provided.
(답안을 제공된 박스 안에 작성해 주세요.)

Student ID	
Student Name	

Question:	1	2	3	4	5	6	7	8	Total
Points:	15	15	15	10	10	15	10	10	100
Score:									

1. 15 points A pushdown automaton (PDA) $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z, F\right)$ is a 7 -tuple where:

- Q is a finite set of states
- Σ is a finite set of symbols
- Γ is a finite set of stack alphabets
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma \rightarrow \mathcal{P}\left(Q \times \Gamma^{*}\right)$ is a transition function
- $q_{0} \in Q$ is the initial state
- $Z \in \Gamma$ is the initial stack alphabet (the stack is initially Z)
- $F \subseteq Q$ is a set of final states

The languages $L_{E}(P)$ accepted by empty stacks of PDA P is defined as:

$$
L_{E}(P)=\left\{w \in \Sigma^{*} \mid\left(q_{0}, w, Z\right) \vdash^{*}(q, \epsilon, \epsilon) \text { for some } q \in Q\right\}
$$

The language $L_{F}(P)$ accepted by final states of a PDA P is defined as:

$$
L_{F}(P)=\left\{w \in \Sigma^{*} \mid\left(q_{0}, w, Z\right) \vdash^{*}(q, \epsilon, \alpha) \text { for some } q \in F, \alpha \in \Gamma^{*}\right\}
$$

Fill in the blanks about the following pushdown automaton (PDA) P_{1}.

(a) 5 points $L_{E}\left(P_{1}\right)=\{$ \square
(b) 5 points $L_{F}\left(P_{1}\right)=\{$ \square
(c) 5 points The following context-free grammar (CFG) represents the language $L_{E}\left(P_{1}\right)$ accepted by the empty stacks of the PDA P_{1} :

S	$\rightarrow \square$
$A_{0,1}^{X}$	$\rightarrow \square$
$A_{1,1}^{X}$	$\rightarrow \square$
$A_{0,1}^{Y}$	$\rightarrow \square$
$A_{1,1}^{Y}$	$\rightarrow \square$

Note that each variable $A_{i, j}^{X}$ should generate all words that cause the PDA to move from the state q_{i} to the state q_{j} by popping the alphabet X :

$$
A_{i, j}^{X} \Rightarrow^{*} w \quad \text { if and only if } \quad\left(q_{i}, w, X\right) \vdash^{*}\left(q_{j}, \epsilon, \epsilon\right)
$$

and its right-hand side should consist of terminals and variables $A_{0,1}^{X}, A_{1,1}^{X}, A_{0,1}^{Y}, A_{1,1}^{Y}$. You can omit the useless (non-generating and unreachable) variables.
2. 15 points A deterministic pushdown automaton (DPDA) is a PDA that has at most one one-step move (\vdash) from any configuration. A language is a deterministic context-free language (DCFL) if it is accepted by final states of some DPDA. A language is a deterministic context-free language by empty stacks (DCFLES) if it is accepted by empty stacks of some DPDA.
(a) 8 points Design a DPDA P_{2} using a transition diagram whose language $L_{F}\left(P_{2}\right)$ accepted by final states is equal to the following language L_{1} :

$$
L_{F}\left(P_{2}\right)=L_{1}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid i, j, k \geq 1 \wedge i+j \leq 2 k\right\}
$$

(b) 3 points Explain why the language L_{1} is not a $\mathbf{D C F L}_{\mathbf{E S}}$ with a concrete example.

(c) 2 points Give an example of a regular expression whose language is not a DCFL ${ }_{\text {ES }}$. If there is no such regular expression, write down "none".

$$
R=\square
$$

(d) 2 points Give an example of a regular expression whose language is a DCFL ${ }_{\mathbf{E S}}$. If there is no such regular expression, write down "none".

$$
R=\square
$$

3. 15 points Consider the following context-free grammar (CFG) G_{0} :

$$
G_{0}=\left\{\begin{array}{l}
S \rightarrow A \mid \mathrm{a} B B \\
A \rightarrow \mathrm{a} C \mid A \\
B \rightarrow \epsilon|\mathrm{a} B \mathrm{~b}| C \\
C \rightarrow A A
\end{array}\right.
$$

(a) 4 points Construct a CFG G_{1} consisting of productions produced by replacing nullable variables with ϵ in all combinations and removing all ϵ-productions in production rules in G_{0} :
\square
(b) 4 points Construct a CFG G_{2} by removing all unit productions and adding all possible non-unit productions of Y to X for each unit pair (Y, X) in G_{1} :
\square
(c) 4 points Construct a CFG G_{3} by removing all productions that contain non-generating variables or come from unreachable variables in G_{2} :
(d) 3 points Construct a CFG G_{4} by putting G_{3} in Chomsky normal form (CNF):
\square
4. 10 points Design a PDA P_{3} whose language $L_{E}\left(P_{3}\right)$ accepted by empty stacks of P_{3} is equal to the following language L_{2} using a transition diagram:

$$
L_{E}\left(P_{3}\right)=L_{2}=\left\{w \in\{(,)\}^{*} \mid(w \text { is a balanced }) \wedge N_{(}(w) \equiv 1(\bmod 3)\right\}
$$

where $N_{C}(w)$ denotes the number of ('s in w.
$P_{3}=$ \square
5. 10 points Fill in the blanks in the proof showing that the language L_{3} is not a contextfree language (CFL) using the pumping lemma for CFLs.

$$
L_{3}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{i} \mid i, j \geq 0 \wedge i \geq 2 j\right\}
$$

1. Assume that any positive integer n is given. (i.e., $n \geq 1$)
2. Pick a word $L_{3} \ni z=$ \square
3. $|z|=$
 $\geq n$.
4. Assume that any split $z=u v w x y$ satisfying (1) $|v x|>0$ and (2) $|v w x| \leq n$ is given.
5. Let $i=\square$. We need to show that $\neg(3) u v^{i} w x^{i} y \notin L_{3}$:
6. 15 points Consider the following Turing machine (TM) M_{1} and fill in the blanks:

(a) 8 points The language $L\left(M_{1}\right)$ accepted by the TM M_{1} is:
\square
(b) 7 points Explain why the time complexity of the TM M_{1} is $O\left(n \log _{2} n\right)$.
7. 10 points Draw a Turing machine (TM) M_{2} computing a function $f:\{\mathrm{a}\}^{*} \rightarrow\{\mathrm{a}\}^{*}$: $f\left(\mathrm{a}^{n}\right)=\mathrm{a}^{2^{n}} \quad$ where $\quad n \geq 0$

8. 10 points True/False questions. Answer O for True and X for False.
(Note that each question is worth 1 points, but you will get -1 points for each wrong answer. So, if you are unsure about the answer, leave it blank.)
9. There are uncountably many recursively enumerable languages (RELs).
10. If a language is defined by an unambiguous grammar, it is DCFL.
11. All NP problems are polynomial-time reducible to a NP-hard problem.
12. A language $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\} \backslash\left\{\mathrm{a}^{100} \mathrm{~b}^{100}\right\}$ is a CFL.
13. All CFLs can be recognized by empty stacks of a PDA having a single state.
14. The universal language $L_{u}=\{(M, w) \mid w \in L(M)\}$ is decidable.
15. The intersection of two CFLs is always a non-CFL.
16. There is no NP problem can be solved by a TM in polynomial time.
17. We can always construct a DPDA for any regular language.

18. If $\mathrm{P}=\mathrm{NP}$, then NP-complete problems are in P .

This is the last page.
I hope that your tests went well!

