Midterm Exam COSE215: Theory of Computation 2024 Spring

Instructor: Jihyeok Park

April 24, 2024. 13:30-14:45

- If you are not good at English, please write your answers in Korean. (영어가 익숙하지 않은 경우, 답안을 한글로 작성해 주세요.)
- Write answers in good handwriting. If we cannot recognize your answers, you will not get any points. (글씨를 알아보기 힘들면 점수를 드릴 수 없습니다. 답안을 읽기 좋게 작성해주세요.)
- Write your answers in the boxes provided. (답안을 제공된 박스 안에 작성해 주세요.)

Student ID	
Student Name	

Question:	1	2	3	4	5	6	7	Total
Points:	15	15	15	20	15	10	10	100
Score:								

1. 15 points A deterministic finite automaton (DFA) D is 5-tuple:

$$D = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of **states**
- Σ is a finite set of **symbols**
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the **initial state**
- $F \subseteq Q$ is the set of **final states**

Consider the following DFA D described with a **transition diagram**:

$$D = \begin{array}{c} & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\$$

(a) | 6 points | Fill in the blanks in the **transition table** of D.

(Note that \rightarrow indicates the **initial state**, and \ast indicates a **final state**.)

- (b) 6 points The extended transition function δ* : Q × Σ* → Q of D is defined as:
 (Basis Case) δ*(q, ε) = q
 - (Dasis Case) 0 (q, e) = q
 - (Induction Case) $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^*$

Fill in the blanks in the results of the **extended transition function** δ^* of D.

$$\delta^*(q_1,\epsilon) =$$
 $\delta^*(q_0, \mathtt{bab}) =$
 $\delta^*(q_2, \mathtt{abab}) =$

(c) 3 points Describe the **language** accepted by D:

L(D) =

- 2. 15 points Design a **DFA** using a **transition diagram** that accepts the following languages.
 - (a) 5 points $L = \{ \mathbf{a}^n \mid n \not\equiv 0 \pmod{3} \}$

(b) 5 points $L = \{w \in \{0,1\}^* \mid w \text{ is any string except 1 or 10}\}$

(c) 5 points $L = \{w \in \{a, b\}^* \mid w \text{ has at least two } a$'s and even number of b's}

3. 15 points Consider the following ϵ -nondeterministic finite automaton (ϵ -NFA) N^{ϵ} :

$$N^{\epsilon} = (Q = \{q_0, q_1, q_2, q_3, q_4\}, \Sigma = \{\mathbf{a}, \mathbf{b}\}, \delta, q_0, F = \{q_1\})$$

start $\rightarrow q_0$ a q_1 ϵ q_2
b ϵ a ϵ b
 q_3 a q_4 b

(a) 6 points Construct a **DFA** D using a **transition table** such that $L(D) = L(N^{\epsilon})$ via the **subset construction**.

(Note that \rightarrow indicates the **initial state**, and \ast indicates a **final state**.)

(b) 6 points Consider the following DFA $D' = (P' = \{p_3, p_4\}, \Sigma, \delta', p_3, \{p_4\})$:

$$D' =$$

$$start \rightarrow p_3 \qquad a \qquad p_4$$

Fill in the table in the left side using the **table-filling algorithm** for the states of D and D', and define the **equivalence classes** $(P \cup P')/_{\equiv}$ in the right side using the result of the algorithm.

(c) 3 points Explain why D and D' are **equivalent** using the result of the algorithm:

- 4. 20 points Write regular expressions (REs) that represent the following languages.
 - (a) 5 points $L = \{w \in \{a, b\}^* \mid w \text{ has exactly two } a's\}.$

(b) 5 points $L = \{w \in \{a, b\}^* \mid w \text{ has bab as a substring}\}.$

(Note that a **substring** is a contiguous sequence of characters within a string. For example, <u>bbabb</u>, <u>babbba</u>, <u>baabab</u> $\in L$ but bb, <u>baab</u>, <u>abaabab</u> $\notin L$.)

(c) 5 points $L \subseteq \{a, b\}^*$ is the language of the following DFA:

(d) 5 points L ⊆ {a, b}* is the language such that h(L) is the language of the following DFA where h : {a, b} → {0, 1}* is a homomorphism with h(a) = 101 and h(b) = 11.
(Hint: construct a DFA accepting L and convert it to an equivalent regular expression.)

- 5. 15 points Fill in the blanks in the following proofs showing that each language is NOT regular using the pumping lemma for regular languages.
 (a) 7 points L = {w ∈ {a, b}* | w has the same number of a's and b's}.
 1. Assume that any positive integer n is given. (i.e., n ≥ 1)
 2. Pick a word L ∋ w = _______.
 3. |w| = ________ ≥ n.
 4. Assume that any split w = xyz satisfying ① |y| > 0 and ② |xy| ≤ n is given.
 5. Let i = _______. We need to show that ¬③ xyⁱz ∉ L:
 - (b) 8 points The language $L = \{a^i b^j \mid i \neq j\}$ is **NOT regular**.

Prove that the following language L' is also **NOT regular** using the closure properties of regular languages with the fact that L is not regular.

 $L' = \{w \in \{a, b\}^* \mid \text{the number of } a$'s is not equal to the number of b's}

6. 10 points Design context-free grammars that represent the following languages.

(a) 5 points
$$L = \{w \in \{a, b, c\}^* \mid N_a(w) = N_b(w)\}$$

(b) 5 points $L = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid i, j, k \ge 0 \land i + 2k = j \}$

7. 10 points Design an **unambiguous context-free grammar** for the following language. $L = \{w \in \{0, 1, +, *\}^* \mid w \text{ is an arithmetic expression evaluated to an odd number}\}$ Only single-digit numbers (0 or 1) are allowed, and multiple digits (e.g., 110) are not allowed. The * operator has higher precedence than the + operator, and they are left-associative.

For example, 1+0*1 is in L because it is evaluated to an odd number 1+(0*1) = 1.

This is the last page. I hope that your tests went well!