Midterm Exam
 COSE215: Theory of Computation
 2024 Spring

Instructor: Jihyeok Park
April 24, 2024. 13:30-14:45

- If you are not good at English, please write your answers in Korean. (영어가 익숙하지 않은 경우, 답안을 한글로 작성해 주세요.)
- Write answers in good handwriting.

If we cannot recognize your answers, you will not get any points.
(글씨를 알아보기 힘들면 점수를 드릴 수 없습니다. 답안을 읽기 좋게 작성해주세요.)

- Write your answers in the boxes provided.
(답안을 제공된 박스 안에 작성해 주세요.)

Student ID	
Student Name	

Question:	1	2	3	4	5	6	7	Total
Points:	15	15	15	20	15	10	10	100
Score:								

1. 15 points A deterministic finite automaton (DFA) D is 5-tuple:

$$
D=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

- Q is a finite set of states
- Σ is a finite set of symbols
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Consider the following DFA D described with a transition diagram:

(a) 6 points Fill in the blanks in the transition table of D.
(Note that \rightarrow indicates the initial state, and $*$ indicates a final state.)

$q_{i} \in Q$	a	b	
\square	q_{0}	q_{1}	q_{3}
q_{1}	q_{1}	q_{2}	
\square	q_{2}	\square	\square
	q_{3}	\square	\square

(b) 6 points The extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ of D is defined as:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

Fill in the blanks in the results of the extended transition function δ^{*} of D.

(c) 3 points Describe the language accepted by D :

$$
L(D)=\square
$$

2. 15 points Design a DFA using a transition diagram that accepts the following languages.
(a) 5 points $L=\left\{\mathrm{a}^{n} \mid n \not \equiv 0(\bmod 3)\right\}$
\square
(b) 5 points $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ is any string except 1 or 10$\}$
\square
(c) 5 points $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ has at least two a's and even number of b's $\}$
3. 15 points Consider the following ϵ-nondeterministic finite automaton (ϵ-NFA) N^{ϵ} :

$$
N^{\epsilon}=\left(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \delta, q_{0}, F=\left\{q_{1}\right\}\right)
$$

(a) 6 points Construct a DFA D using a transition table such that $L(D)=L\left(N^{\epsilon}\right)$ via the subset construction.
(Note that \rightarrow indicates the initial state, and $*$ indicates a final state.)

(b) 6 points Consider the following DFA $D^{\prime}=\left(P^{\prime}=\left\{p_{3}, p_{4}\right\}, \Sigma, \delta^{\prime}, p_{3},\left\{p_{4}\right\}\right)$:

Fill in the table in the left side using the table-filling algorithm for the states of D and D^{\prime}, and define the equivalence classes $\left(P \cup P^{\prime}\right) / \equiv$ in the right side using the result of the algorithm.

(c) 3 points Explain why D and D^{\prime} are equivalent using the result of the algorithm:
\square
4. 20 points Write regular expressions (REs) that represent the following languages.
(a) 5 points $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ has exactly two a's $\}$.

$$
R=\square
$$

(b) 5 points $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ has bab as a substring $\}$.
(Note that a substring is a contiguous sequence of characters within a string. For example, bbabb, $\underline{\text { babbba, baabab }} \in L$ but bb, baab, abaaba $\notin L$.)
\square
(c) 5 points $L \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$ is the language of the following DFA:

$$
R=\square
$$

(d) 5 points $L \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$ is the language such that $h(L)$ is the language of the following DFA where $h:\{\mathrm{a}, \mathrm{b}\} \rightarrow\{0,1\}^{*}$ is a homomorphism with $h(\mathrm{a})=101$ and $h(\mathrm{~b})=11$. (Hint: construct a DFA accepting L and convert it to an equivalent regular expression.)

$$
R=\square
$$

5. 15 points Fill in the blanks in the following proofs showing that each language is NOT regular using the pumping lemma for regular languages.
(a) 7 points $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ has the same number of a's and b's $\}$.
6. Assume that any positive integer n is given. (i.e., $n \geq 1$)
7. Pick a word $L \ni w=\square$
8. $|w|=\square \geq n$.
9. Assume that any split $w=x y z$ satisfying (1) $|y|>0$ and (2) $|x y| \leq n$ is given.
10. Let $i=\square$. We need to show that $\neg(3) x y^{i} z \notin L$:
\square
(b) 8 points The language $L=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mid i \neq j\right\}$ is NOT regular.

Prove that the following language L^{\prime} is also NOT regular using the closure properties of regular languages with the fact that L is not regular.
$L^{\prime}=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid\right.$ the number of a 's is not equal to the number of b 's $\}$
6. 10 points Design context-free grammars that represent the following languages.
(a) 5 points $L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid N_{\mathrm{a}}(w)=N_{\mathrm{b}}(w)\right\}$
b) 5 points $L=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid i, j, k \geq 0 \wedge i+2 k=j\right\}$

7. 10 points Design an unambiguous context-free grammar for the following language. $L=\left\{w \in\{0,1,+, *\}^{*} \mid w\right.$ is an arithmetic expression evaluated to an odd number $\}$

Only single-digit numbers (0 or 1) are allowed, and multiple digits (e.g., 110) are not allowed. The * operator has higher precedence than the + operator, and they are left-associative. For example, $1+0 * 1$ is in L because it is evaluated to an odd number $1+(0 * 1)=1$.

