Lecture 13 – Parse Trees and Ambiguity COSE215: Theory of Computation

Jihyeok Park

PLRG

2024 Spring

Recall

• A context-free grammar (CFG):

$$G = (V, \Sigma, S, R)$$

• The language of a CFG G:

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

• A language *L* is a **context-free language (CFL)**:

$$\exists$$
 CFG G. $L(G) = L$

- For a given word $w \in L(G)$, a **derivation** for w is $S \Rightarrow^* w$
- A sequence $\alpha \in (V \cup \Sigma)^*$ is a sentential form if $S \Rightarrow^* \alpha$.

Contents

1. Parse Trees

Definition Yields Relationship between Parse Trees and Derivations

2. Ambiguity

Ambiguous Grammars Eliminating Ambiguity Inherent Ambiguity

Contents

1. Parse Trees Definition Yields Relationship between Parse Trees and Derivations

2. Ambiguity

Ambiguous Grammars Eliminating Ambiguity Inherent Ambiguity

Consider the following CFG for balanced parentheses:

 $S \rightarrow \epsilon \mid (S) \mid SS$

There are two different derivations for the sentential form (S)(S):

Consider the following CFG for balanced parentheses:

 $S \rightarrow \epsilon \mid (S) \mid SS$

There are two different derivations for the sentential form (S)(S):

$$(1) \quad S \quad \Rightarrow_L \quad SS \quad \Rightarrow_L \quad (S)S \quad \Rightarrow \quad (S)(S)$$

Consider the following CFG for balanced parentheses:

 $S \rightarrow \epsilon \mid (S) \mid SS$

There are two different derivations for the sentential form (S)(S):

5/26

Consider the following CFG for balanced parentheses:

 $S \rightarrow \epsilon \mid (S) \mid SS$

There are two different derivations for the sentential form (S)(S):

However, **parse trees** focus on the structure of the derivations instead of considering the order of the derivation steps.

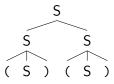
Consider the following CFG for balanced parentheses:

 $S \rightarrow \epsilon \mid (S) \mid SS$

There are two different derivations for the sentential form (S)(S):

However, **parse trees** focus on the structure of the derivations instead of considering the order of the derivation steps.

For example, the above two derivations have the same parse tree:



Definition (Parse Trees)

For a given CFG $G = (V, \Sigma, S, R)$, parse trees are trees satisfying:

- **1** The **root node** is labeled with the **start variable** *S*.
- ② Each internal node is labeled with a variable A ∈ V. If its children are labeled with:

$$X_1, X_2, \cdots, X_k$$

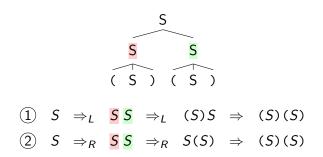
from the left to the right, then $A \rightarrow X_1 X_2 \cdots X_k \in R$.

Bach leaf node is labeled with a variable, symbol, or ε. However, if a leaf node is labeled with ε, it must be the only child of its parent.

Parse Trees – Example 1: Balanced Parentheses

$$S \rightarrow \epsilon \mid (S) \mid SS$$

A parse tree for (S)(S):



Parse Trees – Example 2: Even Palindromes

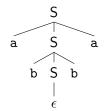
 $S \rightarrow \epsilon \mid aSa \mid bSb$

A parse tree for abba:

Parse Trees – Example 2: Even Palindromes

 $S \rightarrow \epsilon \mid aSa \mid bSb$

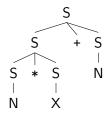
A parse tree for abba:



Parse Trees – Example 3: Arithmetic Expressions

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

A parse tree for N * X + N:

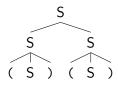


Definition (Yields)

The sequence obtained by concatenating the labels (without ϵ) of the leaf nodes of a parse tree from left to right is called the **yield** of the parse tree.

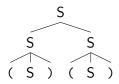
Definition (Yields)

The sequence obtained by concatenating the labels (without ϵ) of the leaf nodes of a parse tree from left to right is called the **yield** of the parse tree.



Definition (Yields)

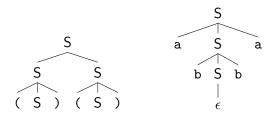
The sequence obtained by concatenating the labels (without ϵ) of the leaf nodes of a parse tree from left to right is called the **yield** of the parse tree.



Its yield is (S)(S).

Definition (Yields)

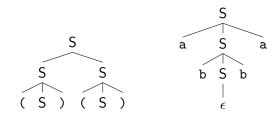
The sequence obtained by concatenating the labels (without ϵ) of the leaf nodes of a parse tree from left to right is called the **yield** of the parse tree.



Its yield is (S)(S).

Definition (Yields)

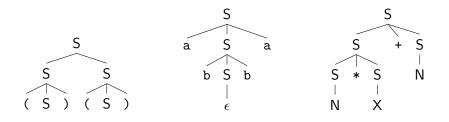
The sequence obtained by concatenating the labels (without ϵ) of the leaf nodes of a parse tree from left to right is called the **yield** of the parse tree.



Its yield is (S)(S). Its yield is abba.

Definition (Yields)

The sequence obtained by concatenating the labels (without ϵ) of the leaf nodes of a parse tree from left to right is called the **yield** of the parse tree.

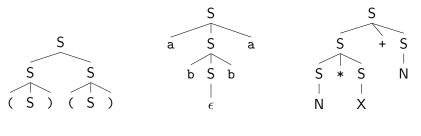


Its yield is (S)(S).

Its yield is abba.

Definition (Yields)

The sequence obtained by concatenating the labels (without ϵ) of the leaf nodes of a parse tree from left to right is called the **yield** of the parse tree.



Its yield is (S)(S).

Its yield is abba.

Its yield is N * X + N.

Relationship between Parse Trees and Derivations

Theorem (Parse Trees and Derivations)

For a given CFG $G = (V, \Sigma, S, R)$, for any sequence $\alpha \in (V \cup \Sigma)^*$:

 $S \Rightarrow^* \alpha \iff \exists \text{ parse tree } T. \text{ s.t. } T \text{ yields } \alpha$

Relationship between Parse Trees and Derivations

Theorem (Parse Trees and Derivations)

For a given CFG $G = (V, \Sigma, S, R)$, for any sequence $\alpha \in (V \cup \Sigma)^*$:

 $S \Rightarrow^* \alpha \iff \exists \text{ parse tree } T. \text{ s.t. } T \text{ yields } \alpha$

For example, consider the sequence (S)(S):

Contents

1. Parse Trees Definition

- Yields
- Relationship between Parse Trees and Derivations

2. Ambiguity

Ambiguous Grammars Eliminating Ambiguity Inherent Ambiguity

Is there always a **unique** parse tree for a given sentential form?

Is there always a **unique** parse tree for a given sentential form?

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

For example, consider the sentential form N*X+N:

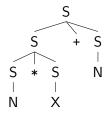
Is there always a **unique** parse tree for a given sentential form?

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$

$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$

$$X \rightarrow a \mid \dots \mid z$$

For example, consider the sentential form N * X + N:



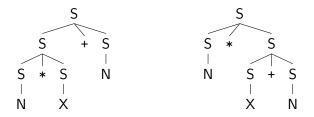
Is there always a **unique** parse tree for a given sentential form?

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$

$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$

$$X \rightarrow a \mid \dots \mid z$$

For example, consider the sentential form N*X+N:



Actually, there are **two** parse trees for N * X + N.

Definition (Ambiguous Grammar)

A context-free grammar $G = (V, \Sigma, S, R)$ is **ambiguous** if there exist a word $w \in \Sigma^*$ and two distinct parse trees for w. If not, G is **unambiguous**.

Definition (Ambiguous Grammar)

A context-free grammar $G = (V, \Sigma, S, R)$ is **ambiguous** if there exist a word $w \in \Sigma^*$ and two distinct parse trees for w. If not, G is **unambiguous**.

Theorem

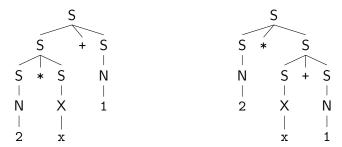
Let $G = (V, \Sigma, S, R)$ be a CFG. Then, the following numbers are equal for any sequence of variables or symbols $w \in (V \cup \Sigma)^*$:

- 1 The number of parse trees whose yields are w.
- 2 The number of left-most derivations for w.
- **3** The number of right-most derivations for w.

Ambiguous Grammars – Example

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

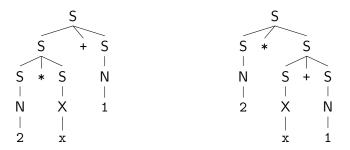
This grammar is **ambiguous** because there are **two** parse trees for the word 2 * x + 1:



Ambiguous Grammars – Example

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

This grammar is **ambiguous** because there are **two** parse trees for the word 2 * x + 1:



Note that it means that there are **two** left-most (or right-most) derivations for 2 * x + 1 by the previous theorem.

COSE215 @ Korea University

Lecture 13 - Parse Trees and Ambiguity

Ambiguous Grammars – Example

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

There are **two** left-most derivations for 2 * x + 1:

1 Applying the production rule $S \rightarrow S+S$ first:

2 Applying the production rule $S \rightarrow S \ast S$ first:

Eliminating Ambiguity

Unfortunately,

- There is **NO** general algorithm to remove ambiguity from a CFG.
- There is even **NO** algorithm to determine a CFG is ambiguous.

Eliminating Ambiguity

Unfortunately,

- There is **NO** general algorithm to remove ambiguity from a CFG.
- There is even **NO** algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually **eliminate** the ambiguity in a given grammar commonly used in programming languages.

Eliminating Ambiguity

PLRG

Unfortunately,

- There is **NO** general algorithm to remove ambiguity from a CFG.
- There is even **NO** algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually **eliminate** the ambiguity in a given grammar commonly used in programming languages.

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

PLRG

Unfortunately,

- There is **NO** general algorithm to remove ambiguity from a CFG.
- There is even **NO** algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually **eliminate** the ambiguity in a given grammar commonly used in programming languages.

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

For example, an equivalent but unambiguous grammar is:

$$S \rightarrow T \mid S+T$$

$$T \rightarrow F \mid T*F$$

$$F \rightarrow N \mid X \mid (S)$$

$$N \rightarrow 0 \mid \cdots \mid 9 \mid 0N \mid \cdots \mid 9N$$

$$X \rightarrow a \mid \cdots \mid z$$

Now, the unique parse tree for 2 * x + 1 is:

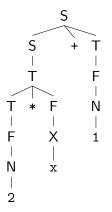
$$S \rightarrow T \mid S+T$$

$$T \rightarrow F \mid T*F$$

$$F \rightarrow N \mid X \mid (S)$$

$$N \rightarrow 0 \mid \cdots \mid 9 \mid 0N \mid \cdots \mid 9N$$

$$X \rightarrow a \mid \cdots \mid z$$



First, analyze why the original grammar is ambiguous.

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

19 / 26

First, analyze why the original grammar is ambiguous.

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

• The **precedence** of + and * is not specified.

• For example, two parse trees for 1 * 2 + 3 interpreted as:

1 * (2 + 3) and (1 * 2) + 3

• Let's give * higher precedence than + to interpret it as (1 * 2) + 3.

First, analyze why the original grammar is ambiguous.

$$S \rightarrow N \mid X \mid S+S \mid S*S \mid (S)$$
$$N \rightarrow 0 \mid \dots \mid 9 \mid 0N \mid \dots \mid 9N$$
$$X \rightarrow a \mid \dots \mid z$$

• The **precedence** of + and * is not specified.

• For example, two parse trees for 1 * 2 + 3 interpreted as:

1 * (2 + 3) and (1 * 2) + 3

- Let's give * higher precedence than + to interpret it as (1 * 2) + 3.
- The associativity of + (or *) is not specified.
 - For example, two parse trees for 1 + 2 + 3 interpreted as:

1 + (2 + 3) and (1 + 2) + 3

• Let's give the left-associativity to + to interpret it as (1 + 2) + 3.

To enforce the **precedence**, define new variables F for factors and T for terms:

To enforce the **precedence**, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x,
$$(1 + 2)$$
, ...

In the grammar, F is defined as:

 $F \rightarrow N \mid X \mid (S)$

To enforce the **precedence**, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x,
$$(1 + 2)$$
, ...

In the grammar, F is defined as:

$$F \rightarrow N \mid X \mid (S)$$

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, ...

In the grammar, T is defined as:

 $T \rightarrow F \mid T * F$

To enforce the **precedence**, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x,
$$(1 + 2)$$
, ...

In the grammar, F is defined as:

$$F \rightarrow N \mid X \mid (S)$$

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, ...

In the grammar, T is defined as:

$$T \rightarrow F \mid T * F$$

• An expression is the addition of one or more terms:

$$42, 1+2, 1+2 * 3, (1+2) * 3 + 4), \cdots$$

In the grammar, S is defined as:

$$S \rightarrow T \mid S + T$$

The unambiguous grammar is:

$$S \rightarrow T \mid S+T$$

$$T \rightarrow F \mid T*F$$

$$F \rightarrow N \mid X \mid (S)$$

$$N \rightarrow 0 \mid \cdots \mid 9 \mid 0N \mid \cdots \mid 9N$$

$$X \rightarrow a \mid \cdots \mid z$$

The unambiguous grammar is:

$$S \rightarrow T \mid S+T$$

$$T \rightarrow F \mid T*F$$

$$F \rightarrow N \mid X \mid (S)$$

$$N \rightarrow 0 \mid \cdots \mid 9 \mid 0N \mid \cdots \mid 9N$$

$$X \rightarrow a \mid \cdots \mid z$$

• This grammar supports the left-associativity of + and *. Why?

The unambiguous grammar is:

$$S \rightarrow T \mid S+T$$

$$T \rightarrow F \mid T*F$$

$$F \rightarrow N \mid X \mid (S)$$

$$N \rightarrow 0 \mid \cdots \mid 9 \mid 0N \mid \cdots \mid 9N$$

$$X \rightarrow a \mid \cdots \mid z$$

- This grammar supports the left-associativity of + and *. Why?
 - $S \rightarrow S + T$ and $T \rightarrow T * F$ are left-recursive.

The unambiguous grammar is:

$$S \rightarrow T \mid S+T$$

$$T \rightarrow F \mid T*F$$

$$F \rightarrow N \mid X \mid (S)$$

$$N \rightarrow 0 \mid \cdots \mid 9 \mid 0N \mid \cdots \mid 9N$$

$$X \rightarrow a \mid \cdots \mid z$$

• This grammar supports the left-associativity of + and *. Why?

• $S \rightarrow S + T$ and $T \rightarrow T * F$ are left-recursive.

• Then, how to support the right-associativity of + and *?

The unambiguous grammar is:

$$S \rightarrow T \mid S+T$$

$$T \rightarrow F \mid T*F$$

$$F \rightarrow N \mid X \mid (S)$$

$$N \rightarrow 0 \mid \cdots \mid 9 \mid 0N \mid \cdots \mid 9N$$

$$X \rightarrow a \mid \cdots \mid z$$

• This grammar supports the left-associativity of + and *. Why?

•
$$S \rightarrow S + T$$
 and $T \rightarrow T * F$ are left-recursive.

• Then, how to support the right-associativity of + and *?

. . .

• Replace the left-recursive rules with right-recursive rules!

$$\begin{array}{ccc} S & \to T \mid T + S \\ T & \to F \mid F * T \end{array}$$

Inherent Ambiguity

So far, we have discussed the **ambiguity** for grammars. We will now discuss the **inherent ambiguity** for languages.

Definition (Inherent Ambiguity)

A language L is **inherently ambiguous** if all CFGs whose languages are L are ambiguous. (i.e. there is no unambiguous grammar for L)

Inherent Ambiguity

So far, we have discussed the **ambiguity** for grammars. We will now discuss the **inherent ambiguity** for languages.

Definition (Inherent Ambiguity)

A language L is **inherently ambiguous** if all CFGs whose languages are L are ambiguous. (i.e. there is no unambiguous grammar for L)

For example, the following language is inherently ambiguous:

$$L = \{\mathbf{a}^{i}\mathbf{b}^{j}\mathbf{c}^{k} \mid i, j, k \ge 0 \land (i = j \lor j = k)\}$$

Inherent Ambiguity

So far, we have discussed the **ambiguity** for grammars. We will now discuss the **inherent ambiguity** for languages.

Definition (Inherent Ambiguity)

A language L is **inherently ambiguous** if all CFGs whose languages are L are ambiguous. (i.e. there is no unambiguous grammar for L)

For example, the following language is inherently ambiguous:

$$L = \{ \mathbf{a}^{i} \mathbf{b}^{j} \mathbf{c}^{k} \mid i, j, k \ge 0 \land (i = j \lor j = k) \}$$

An example of ambiguous grammar for L is:

$$S \rightarrow L \mid R$$

$$L \rightarrow A \mid Lc$$

$$A \rightarrow \epsilon \mid aAb$$

$$R \rightarrow B \mid aR$$

$$B \rightarrow \epsilon \mid bBc$$

Summary

1. Parse Trees

Definition Yields Relationship between Parse Trees and Derivations

2. Ambiguity

Ambiguous Grammars Eliminating Ambiguity Inherent Ambiguity

Midterm Exam

- The midterm exam will be given in class.
- Date: 13:30-14:45 (1 hour 15 minutes), April 24 (Wed.).
- Location: 604, Woojung Hall of Informatics (우정정보관 604호)
- **Coverage:** Lectures 1 13
- Format: 7–9 questions with closed book and closed notes
 - Filling blanks in some tables, sentences, or expressions.
 - Construction of automata or grammars for given languages.
 - Proofs of given statements related to automata or grammars.
 - Yes/No questions about concepts in the theory of computation.
 - etc.
- Note that there is **no class** on **April 22 (Mon.)**.
- Please refer to the **previous exams** in the course website:

https://plrg.korea.ac.kr/courses/cose215/

Next Lecture

• Pushdown Automata (PDA)

Jihyeok Park jihyeok_park@korea.ac.kr https://plrg.korea.ac.kr