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Recall ’VNPLRG

A context-free grammar is a 4-tuple:
G=(V,L,5R)

A pushdown automaton (PDA) is a finite automaton with a stack.
® Acceptance by final states

® Acceptance by empty stacks

- PE) ) PDAgs

CFL (by final states)
o---e ?
PDAgg
(by empty stacks)
- 2
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Contents ’VNPLRG

1. Equivalence of PDA by Final States and Empty Stacks
PDAEs to PDAEgs
PDAgs to PDAFs

2. Equivalence of PDA and CFGs
CFGs to PDAEs
PDAgs to CFGs

PDAps e——= PDAps —= C(CFG
(by final states) (by empty stacks)
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PDAFs to PDAEs ’NPLRG

Theorem (PDAgs to PDAgs)

For a given PDA P = (Q,%.,T,6,q0, Z, F), 3 PDA P'. Lg(P) = Lg(P").
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PDAFs to PDAEs ’NPLRG

Theorem (PDAgs to PDAgs)

For a given PDA P = (Q,%.,T,6,q0, Z, F), 3 PDA P'. Lg(P) = Lg(P").

start[Z']
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PDAFs to PDAEs ’NPLRG

Theorem (PDAgs to PDAgs)

For a given PDA P = (Q,%,T.,0,q0,Z,F), 3 PDA P'. Lp(P) = Lg(P').
Define a PDA

P =(QU{q,qi}, =, TU{Z'}, 0, q5, 2, @)

where
&(gh, e, 2") = {(q0,22")}
d(ge Qacexr,Xel) = 4(q,a,X)

5 ,E,X U /76 |f G F
d(ge e, XelTU{Z}) = { 58 P X; e} otﬁerwise

d'(q1, e, X e TU{Z'}) = {(a1,6)}
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PDAgs to PDAgs — Example ’MPLRG

Lr(P) = Le(P) = {a™" | n > 0}

alz = xz]
a [X — XX] b[X =€

P =
start [Z] G[Zﬁz]g[Z%Z]

e [X — X]
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PDAgs to PDAgs — Example ’MPLRG

Lr(P) = Le(P) = {a™" | n > 0}

alz = xz]
a [X — XX] b[X =€

P=
start [Z] 6[Zﬁz]g[zaZ]

e [X — X]

¢

e[X —¢€
alZ - XZ] e[z j)e]
a[X = XX] b[X — € e[z — €
i U
start [Z'] @ m &

7 5221\ ez 5 ez 5 N x5

e [X = X] e[Z — €

e[Z — €
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PDAEs to PDAEs ’NPLRG

Theorem (PDAgs to PDAEs)

For a given PDA P = (Q,X,T,5,q0, Z, F), 3 PDA P'. Lg(P) = Le(P').
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PDAEs to PDAEs ’NPLRG

Theorem (PDAgs to PDAEs)

For a given PDA P = (Q,X,T,5,q0, Z, F), 3 PDA P'. Lg(P) = Le(P').

start[Z] @

|7 — 27!
start[Z']
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PDAEs to PDAEs ’NPLRG

Theorem (PDAgs to PDAEs)

Foragiven PDA P = (szv r75a q0727 F)r 3 PDA P'. LE(P) = LF(P/)

Define a PDA

P = (Q U {CI(/), q/1}7 Iy {ZI}7 5,’ q(/)> ZI» {qi})

where
5’((]6,6,2/) = {(quZZI)}

d(ge Q,aexr,Xel) = i(qg,a,X)
d(ge Qe,Xe) = 4(q,¢,X)

i(qgeQ,e,2) = {(a1,2")}
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PDAgs to PDAFs — Example ’MPLRG

Le(P) = LE(P)) = {a™" | n > 0}

alz » XxZ]
a [X — XX] b[X =€

P = ez = 7]
66[XﬁX] e[Z — €
start [Z] qo @ @
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PDAgs to PDAgs — Example 'V PLRG

Le(P) = LE(P)) = {a™" | n > 0}

alz » XxZ]
a [X — XX] b[X =€

P = ez = 7]
;&E[XHX] e[Z — €
start [Z] qo @ @

a[Z = x2]
a[X — XX] b[X —
e[Z — 2]
P — [Z’]—»@ % e[X — X] e[Z =€ e[z — Z]
ez S 221

e[z — Z]
e[Z — Z]
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Contents ’VNPLRG

2. Equivalence of PDA and CFGs
CFGs to PDAEs
PDAgs to CFGs

PDAps ——= CFG
(by empty stacks)
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CFGs to PDAEs ’VNPLRG

Theorem (CFGs to PDAEs)

For a given CFG G = (V, %, S,R), 3 PDA P. L(G) = Lg(P).
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CFGs to PDAEs ’VNPLRG

Theorem (CFGs to PDAEs)

For a given CFG G = (V,X,S,R), 3 PDA P. L(G) = Lg(P).
Define a PDA

P:({q}vza\/UZJé?q)S)@)
where
a.eAcV) = {(q.a)| A= acR)

6(gacex,acer) = {(q.)}
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CFGs to PDAgs — Example 7VPLRG

i(qg,e,Ae V)
dg,aex,acy) = {(qg,6)}

Consider the following CFG:

I
iy
Q
L

>

1

Q
m

Py}
——

S —¢e|aSb|bSa|SS
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CFGs to PDAgs — Example 7VPLRG

i(qg,e,Ae V)
dg,aex,acy) = {(qg,6)}

Consider the following CFG:

I
=
2
£

>

4

e
m

Y
——

S —¢e|aSb|bSa|SS
Then, the equivalent PDA (by empty stacks) is:

€[S—¢
€ [S — aSh]
€ [S — bSa
e [S — SS]
ala —¢
b[b— ¢

start [S] —@
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CFGs to PDAgs — Example 7VPLRG

i(qg,e,Ae V)
dg,aex,acy) = {(qg,6)}

Consider the following CFG:

I
=
>
4
e
m
Y
——

S —¢e|aSb|bSa|SS

Then, the equivalent PDA (by empty stacks) is:

Z E : Z]Sb] (g,abab,S) F (g,abab,aSb)
¢ [S — bSa] = (g, bab, Sb)
e [S — S5 (g, bab,bSab)
a [a — g] F (q, ab Sab)
bb— ¢ F Eq, ab, z)ab)

F (g,b,b

F (g,¢€)

start [S] —@
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PDAEs to CFGs ’VNPLRG

Theorem (PDAgs to CFGs)

For a given PDA P = (Q = {qo,- " ,qn-1},X,1,0,q0,Z,F),
3 CFG G. Lg(P) = L(G).
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PDAEs to CFGs ’VNPLRG

Theorem (PDAgs to CFGs)

For a given PDA P = (Q = {qo,- " ,qn-1},X,1,0,q0,Z,F),
3 CFG G. Lg(P) = L(G).

The key idea is defining a variable A,?f/- foreach 0 <i,j < nand X €T that
generates all words causing the PDA to move from g; to g; by popping X:

A,?Z. =% w if and only if (qi, w, X) F* (qj, €, €)
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PDAEs to CFGs ’VNPLRG

Theorem (PDAgs to CFGs)

For a given PDA P = (Q = {qo0,- " ,qn-1},X,1,60,0,Z,F),
3 CFG G. Lg(P) = L(G).

The key idea is defining a variable A,?f/- foreach 0 <i,j < nand X €T that
generates all words causing the PDA to move from g; to g; by popping X:

A,?Z. =% w if and only if (qi, w, X) F* (qj, €, €)

With this idea, we can define a CFG that generates all words accepted by
the PDA P with empty stacks as follows:

z z z
S — Abo | Ad 1 |- ] A n—1
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PDAEs to CFGs ’VNPLRG

Theorem (PDAgs to CFGs)

For a given PDA P = (Q = {qo0,- " ,qn-1},X,1,60,0,Z,F),
3 CFG G. Lg(P) = L(G).

The key idea is defining a variable A,?f/- foreach 0 <i,j < nand X €T that
generates all words causing the PDA to move from g; to g; by popping X:

A,?Z. =% w if and only if (qi, w, X) F* (qj, €, €)

With this idea, we can define a CFG that generates all words accepted by
the PDA P with empty stacks as follows:

z z z
S — Abo | Ad 1 |- ] A n—1

Then, how to define production rules for A,{(J-?
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PDAEs to CFGs ’VNPLRG

We can define production rules for A,XJ as follows.
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PDAEs to CFGs ’VNPLRG

We can define production rules for A,XJ as follows.

Consider a transition (qj, X1 --- Xm) € 6(qi, a, X) for all gi € Q,
aeXU{e}, Xel.
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PDAEs to CFGs ’VNPLRG

We can define production rules for A,XJ as follows.

Consider a transition (qj, X1 --- Xm) € 6(qi, a, X) for all gi € Q,
aeXU{e}, Xel.

It makes PDA move from g; to g; by replacing X with X --- Xp,.
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PDAEs to CFGs ’VNPLRG

We can define production rules for A,XJ as follows.

Consider a transition (qj, X1 --- Xm) € 6(qi, a, X) for all gi € Q,
aeXU{e}, Xel.

It makes PDA move from g; to g; by replacing X with X --- Xp,.

Then, we need to pop X1, -, X, from the stack to make the stack empty.
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PDAEs to CFGs ’VNPLRG
We can define production rules for A,XJ as follows.

Consider a transition (qj, X1 --- Xm) € 6(qi, a, X) for all gi € Q,
aeXU{e}, Xel.

It makes PDA move from g; to g; by replacing X with X --- Xp,.

Then, we need to pop X1, -, X, from the stack to make the stack empty.
Let ki,--- , km be the states that the PDA moves to after popping
X1, , Xm, respectively.
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PDAgs to CFGs 7V PLRG

We can define production rules for A,XJ as follows.

Consider a transition (qj, X1 --- Xm) € 6(qi, a, X) for all gi € Q,
aeXU{e}, Xel.

It makes PDA move from g; to g; by replacing X with X --- Xp,.
Then, we need to pop X1, -, X, from the stack to make the stack empty.

Let ki,--- , km be the states that the PDA moves to after popping
X1, , Xm, respectively.

To cover all possible combinations of ki, - -+, k;,, we need to define a
production rule for AX, as follows:

X X1 Xo X
A,—7km —a Aj,kl Akhk2 . "Ak:_l,km forall 0 < ki, ,km <n
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PDAgs to CFGs — Example 7VNPLRG

V4 X X1 Xo X
5— Ay, Ak = 3 A d0 Al Pl ke

Consider the following PDA (by empty stacks):

alZ = XZ] €[Z —¢
a [X — XX] b[X — €

e[Z = 2]
start [Z]
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PDAgs to CFGs — Example

V4 X X1 Xz
S%AO,_[ Af,km _>aAJ7k1 Akhkz“'A

Consider the following PDA (by empty stacks):

alZ = XZ] €[Z —¢
a[X — XX] b[X — €

e[Z = 2]
start [Z]

Then, the equivalent CFG is:

S — Af,l AL,

A(;O %aAéO A§O|aA§1 A§0|A§O
A9(1 —>aA9(0A9(1|aA())(1A}(1|A}(1
A()J(o%aAooA()J(o|aA9(1A1o|A}(o
Ag1 — aAgo Ao laAgy ATr | AT
A{l — €

AXL = b
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PDAgs to CFGs — Example 7VNPLRG

V4 X X1 Xo X
S%AO,_[ Af,km _>aAJ7k1 Akhkz“'A m

km—lykm
Consider the following PDA (by empty stacks):

alZ = XZ] €[Z —¢
a[X — XX] b[X — €

e[Z = 2]
start [Z]

Then, the equivalent CFG is:

S — Af,l AL, S
A(;O %aAéO A§O|aA§1 A§0|A§O

A9(1 —>aA9(0A9(1|aA())(1A}(1|A}(1
A()J(O%aA()J(OA()J(O|21A9(1A10|A}(0

Ag1 — aAgo Ao laAgy ATr | AT

A{l — €

A, = b

A,

a Af)fl Afl

aa Aél Afl A121
aa AY; AX AZ)
aab Afl A12,1
aabb A1Z,1

aabb

R
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Summary ’VPLRG

1. Equivalence of PDA by Final States and Empty Stacks
PDAEs to PDAEgs
PDAgs to PDAFs

2. Equivalence of PDA and CFGs
CFGs to PDAEs
PDAgs to CFGs

PDAps e——= PDAps —= C(CFG
(by final states) (by empty stacks)
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Next Lecture ’VNPLRG

e Deterministic Pushdown Automata (DPDA)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

COSE215 @ Korea University Lecture 16 — Equiv. of PDA and CFGs May 6, 2024 18/18


https://plrg.korea.ac.kr

	Equivalence of PDA by Final States and Empty Stacks
	PDAFS to PDAES
	PDAES to PDAFS

	Equivalence of PDA and CFGs
	CFGs to PDAES
	PDAES to CFGs


