Lecture 17 – Deterministic Pushdown Automata (DPDA)

COSE215: Theory of Computation

Jihyeok Park

2024 Spring

Recall

- A pushdown automaton (PDA) is an extension of ε-NFA with a stack. Thus, PDA is non-deterministic.
 - Acceptance by final states
 - Acceptance by empty stacks
- Then, how about deterministic PDA (DPDA)?
- What is the language class of DPDA? Still, CFL?

Contents

- 1. Deterministic Pushdown Automata (DPDA)
- 2. Deterministic Context-Free Languages (DCFLs)

Fact 1: DCFL \subsetneq CFL Fact 2: RL \subsetneq DCFL

3. Languages Accepted by Empty Stacks of DPDA (DCFL_{ES})

Fact 3: $DCFL_{ES} \subsetneq DCFL$

Fact 4: DCFL_{ES} = DCFL having Prefix Property

Fact 5: $RL \not\subset DCFL_{ES}$

4. Inherent Ambiguity of DCFLs

Fact 6: DCFL \subseteq Non Inherently Ambiguous Languages

Contents

1. Deterministic Pushdown Automata (DPDA)

2. Deterministic Context-Free Languages (DCFLs)

Fact 1: DCFL \subsetneq CFI Fact 2: RL \subsetneq DCFL

3. Languages Accepted by Empty Stacks of DPDA (DCFL $_{\mathsf{ES}})$

Fact 3: $DCFL_{ES} \subsetneq DCFL$

Fact 4: DCFL_{ES} = DCFL having Prefix Property

Fact 5: $RL \not\subset DCFL_{ES}$

4. Inherent Ambiguity of DCFLs

Fact 6: DCFL ⊊ Non Inherently Ambiguous Languages

Definition (Deterministic Pushdown Automata (DPDA))

A deterministic pushdown automaton (DPDA) is a pushdown automaton having at most one one-step move (\vdash) from any configuration.

Definition (Deterministic Pushdown Automata (DPDA))

A deterministic pushdown automaton (DPDA) is a pushdown automaton having at most one one-step move (\vdash) from any configuration.

We can check it with the following conditions:

- **1** $|\delta(q, a, X)|$ ≤ 1 for all $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$.
- 2 If $\delta(q, \epsilon, X) \neq \emptyset$, then $\delta(q, a, X) = \emptyset$ for all $a \in \Sigma$.

Definition (Deterministic Pushdown Automata (DPDA))

A deterministic pushdown automaton (DPDA) is a pushdown automaton having at most one one-step move (\vdash) from any configuration.

We can check it with the following conditions:

- **1** $|\delta(q, a, X)|$ ≤ 1 for all $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$.
- 2 If $\delta(q, \epsilon, X) \neq \emptyset$, then $\delta(q, a, X) = \emptyset$ for all $a \in \Sigma$.

For example, is the following PDA deterministic?

Definition (Deterministic Pushdown Automata (DPDA))

A deterministic pushdown automaton (DPDA) is a pushdown automaton having at most one one-step move (\vdash) from any configuration.

We can check it with the following conditions:

- **1** $|\delta(q, a, X)|$ ≤ 1 for all $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$.
- 2 If $\delta(q, \epsilon, X) \neq \emptyset$, then $\delta(q, a, X) = \emptyset$ for all $a \in \Sigma$.

For example, is the following PDA deterministic?

No, because it has multiple transitions for (q_0, a, Z) .

Definition (Deterministic Pushdown Automata (DPDA))

A deterministic pushdown automaton (DPDA) is a pushdown automaton having at most one one-step move (\vdash) from any configuration.

We can check it with the following conditions:

- **1** $|\delta(q, a, X)|$ ≤ 1 for all $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$.
- 2 If $\delta(q, \epsilon, X) \neq \emptyset$, then $\delta(q, a, X) = \emptyset$ for all $a \in \Sigma$.

However, the following PDA is **deterministic**:

Definition (Deterministic Pushdown Automata (DPDA))

A deterministic pushdown automaton (DPDA) is a pushdown automaton having at most one one-step move (\vdash) from any configuration.

We can check it with the following conditions:

- **1** $|\delta(q, a, X)|$ ≤ 1 for all $q \in Q$, $a \in \Sigma \cup {\epsilon}$, and $X \in \Gamma$.
- 2 If $\delta(q, \epsilon, X) \neq \emptyset$, then $\delta(q, a, X) = \emptyset$ for all $a \in \Sigma$.

However, the following PDA is **deterministic**:

Contents

- 1. Deterministic Pushdown Automata (DPDA)
- 2. Deterministic Context-Free Languages (DCFLs)

Fact 1: DCFL \subsetneq CFL Fact 2: RL \subsetneq DCFL

3. Languages Accepted by Empty Stacks of DPDA (DCFL $_{\mathsf{ES}})$

Fact 3: $DCFL_{ES} \subsetneq DCFL$

Fact 4: DCFL_{ES} = DCFL having Prefix Property

Fact 5: $RL \not\subset DCFL_{ES}$

4. Inherent Ambiguity of DCFLs

Fact 6: DCFL ⊊ Non Inherently Ambiguous Languages

Definition (Deterministic Context-Free Languages (DCFLs))

A language L is a **deterministic context-free language (DCFL)** if and only if there exists a DPDA P such that $L = L_F(P)$ where $L_F(P)$ is the language accepted by **final states** of P.

Deterministic Context-Free Languages (DCFLs)

Definition (Deterministic Context-Free Languages (DCFLs))

A language L is a **deterministic context-free language (DCFL)** if and only if there exists a DPDA P such that $L = L_F(P)$ where $L_F(P)$ is the language accepted by **final states** of P.

For example, the following language is a DCFL:

$$L = \{a^n b^n \mid n \ge 0\}$$

because it is accepted by **final states** of the following **DPDA**:

1 All DCFLs are CFLs **BUT** 2 there exists a CFL that is not a DCFL.

- 1 All DCFLs are CFLs **BUT** 2 there exists a CFL that is not a DCFL.
 - **1** $DCFL \subseteq CFL$: By definition of DCFL, we can easily prove it.

 $\ensuremath{\textcircled{1}}$ All DCFLs are CFLs $\ensuremath{\textbf{BUT}}$ $\ensuremath{\textcircled{2}}$ there exists a CFL that is not a DCFL.

- lacktriangle DCFL \subseteq CFL: By definition of DCFL, we can easily prove it.
- **2** CFL \ DCFL $\neq \varnothing$: What is an example of a CFL that is not a DCFL?

- $\ensuremath{\textcircled{1}}$ All DCFLs are CFLs $\ensuremath{\textbf{BUT}}$ $\ensuremath{\textcircled{2}}$ there exists a CFL that is not a DCFL.
 - lacktriangle DCFL \subseteq CFL: By definition of DCFL, we can easily prove it.
 - **Q** CFL \ DCFL $\neq \emptyset$: What is an example of a CFL that is not a DCFL?

The following language is a CFL but not a DCFL:

$$L = \{ww^R \mid w \in \{a, b\}^*\} \in \mathsf{CFL} \setminus \mathsf{DCFL}$$

- $\ensuremath{\textcircled{1}}$ All DCFLs are CFLs $\ensuremath{\textbf{BUT}}$ $\ensuremath{\textcircled{2}}$ there exists a CFL that is not a DCFL.
 - **1** DCFL \subseteq CFL: By definition of DCFL, we can easily prove it.
 - ② CFL \ DCFL $\neq \varnothing$: What is an example of a CFL that is not a DCFL?

The following language is a CFL but not a DCFL:

$$L = \{ww^R \mid w \in \{a, b\}^*\} \in \mathsf{CFL} \setminus \mathsf{DCFL}$$

The formal proof is complex, but we can intuitively understand it with the following two example words in L:

- $ww^R = abba \in L$ where w = ab
- $ww^R = abbbba \in L$ where w = abb

- 1 All DCFLs are CFLs **BUT** 2 there exists a CFL that is not a DCFL.

 - **2** CFL \ DCFL $\neq \emptyset$: What is an example of a CFL that is not a DCFL?

The following language is a CFL but not a DCFL:

$$L = \{ww^R \mid w \in \{a, b\}^*\} \in \mathsf{CFL} \setminus \mathsf{DCFL}$$

The formal proof is complex, but we can intuitively understand it with the following two example words in L:

- $ww^R = abba \in L$ where w = ab
- $ww^R = abbbba \in L$ where w = abb

When we read b after ab, we need to consider two possible actions:

 \bigcirc pop Y for b (for abba) or \bigcirc push Y for b (for abbbba).

① All RLs are DCFLs **BUT** ② there exists a DCFL that is not an RL.

Fact 2: RL ⊊ DCFL

- ① All RLs are DCFLs **BUT** ② there exists a DCFL that is not an RL.
 - **1** RL \subseteq DCFL : For a given RL L, consider its corresponding DFA D:

$$D = (Q, \Sigma, \delta, q_0, F)$$

Fact 2: $RL \subseteq DCFL$

- 1 All RLs are DCFLs **BUT** 2 there exists a DCFL that is not an RL.
 - **1** $|RL \subseteq DCFL|$: For a given RL *L*, consider its corresponding DFA *D*:

$$D = (Q, \Sigma, \delta, q_0, F)$$

Then, we can construct a DPDA P that accepts L as follows:

$$P = (Q, \Sigma, \{Z\}, \delta_P, q_0, Z, F)$$

where $\forall q \in Q$. $\forall a \in \Sigma$. $\delta_P(q, a, Z) = \{(\delta(q, a), Z)\}$

Fact 2: RL ⊊ DCFL

- ① All RLs are DCFLs **BUT** ② there exists a DCFL that is not an RL.
 - **1** $RL \subseteq DCFL$: For a given RL L, consider its corresponding DFA D:

$$D = (Q, \Sigma, \delta, q_0, F)$$

Then, we can construct a DPDA P that accepts L as follows:

$$P = (Q, \Sigma, \{Z\}, \delta_P, q_0, Z, F)$$

where $\forall q \in Q$. $\forall a \in \Sigma$. $\delta_P(q, a, Z) = \{(\delta(q, a), Z)\}$ because

$$(q_0, w, Z) \vdash^* (q, \epsilon, Z) \iff \delta^*(q_0, w) = q$$

Fact 2: RL ⊊ DCFL

- 1 All RLs are DCFLs **BUT** 2 there exists a DCFL that is not an RL.
 - **1** $RL \subseteq DCFL$: For a given RL L, consider its corresponding DFA D:

$$D = (Q, \Sigma, \delta, q_0, F)$$

Then, we can construct a DPDA P that accepts L as follows:

$$P = (Q, \Sigma, \{Z\}, \delta_P, q_0, Z, F)$$

where $\forall q \in Q$. $\forall a \in \Sigma$. $\delta_P(q, a, Z) = \{(\delta(q, a), Z)\}$ because

$$(q_0, w, Z) \vdash^* (q, \epsilon, Z) \iff \delta^*(q_0, w) = q$$

2 DCFL \ RL $\neq \varnothing$: We already know that the following language is a DCFL but not an RL:

$$L = \{a^n b^n \mid n \ge 0\} \in \mathsf{DCFL} \setminus \mathsf{RL}$$

Contents

- 1. Deterministic Pushdown Automata (DPDA)
- 2. Deterministic Context-Free Languages (DCFLs)

Fact 1: DCFL \subsetneq CFl Fact 2: RL \subsetneq DCFL

3. Languages Accepted by Empty Stacks of DPDA (DCFL $_{ES}$)

Fact 3: $DCFL_{ES} \subsetneq DCFL$

Fact 4: DCFL_{ES} = DCFL having Prefix Property

Fact 5: RL $\not\subset$ DCFL_{ES}

4. Inherent Ambiguity of DCFLs

Fact 6: DCFL ⊊ Non Inherently Ambiguous Languages

Definition (DCFL_{ES})

A language L is a **deterministic context-free language by empty stacks (DCFL_{ES})** if and only if there exists a DPDA P such that $L = L_E(P)$ where $L_E(P)$ is the language accepted by **empty stacks** of P.

Definition (DCFL_{ES})

A language L is a **deterministic context-free language by empty** stacks (DCFL_{ES}) if and only if there exists a DPDA P such that $L = L_E(P)$ where $L_E(P)$ is the language accepted by **empty stacks** of P.

For example, the following language is a DCFL_{ES}:

$$L = \{a^n c b^n \mid n \ge 0\}$$

because it is accepted by empty stacks of the following DPDA:

Fact 3: DCFL_{ES} \subseteq DCFL

- 1 All DCFL_{ES}s are DCFLs **BUT** 2 there is a DCFL but not a DCFL_{ES}.
 - **1** DCFL_{ES} \subseteq DCFL: For a given DCFL_{ES} L, consider its corresponding DPDA P that accepts L by **empty stacks**.

Fact 3: $DCFL_{ES} \subseteq DCFL_{i}$

- 1 All DCFL_{ES}s are DCFLs **BUT** 2 there is a DCFL but not a DCFL_{ES}.
 - **1** DCFL_{ES} \subseteq DCFL : For a given DCFL_{ES} L, consider its corresponding DPDA P that accepts L by **empty stacks**.

Then, we can construct a DPDA P' that accepts L by **final states** as:

Fact 3: DCFL_{ES} ⊊ DCFL

- 1 All DCFL_{ES}s are DCFLs **BUT** 2 there is a DCFL but not a DCFL_{ES}.
 - **2** $\mathsf{DCFL}\setminus\mathsf{DCFL_{ES}}\neq\varnothing$: The following is a DCFL but not a DCFL_{ES}:

$$L = \{a^n b^n \mid n \ge 0\} \in \mathsf{DCFL} \setminus \mathsf{DCFL}_{\mathsf{ES}}$$

Why?

Fact 3: DCFL_{FS} \subseteq DCFL

- $\widehat{\mbox{\fontfamily{1}}}$ All DCFL are DCFLs $\mbox{\fontfamily{1}}$ there is a DCFL but not a DCFLes.

$$L = \{a^n b^n \mid n \ge 0\} \in \mathsf{DCFL} \setminus \mathsf{DCFL}_{\mathsf{ES}}$$

Why?

The DPDA needs to accept the following two words by empty stacks:

- $w = \epsilon \in L$
- $w = ab \in L$

Fact 3: DCFL_{ES} \subseteq DCFL

- 1 All DCFL_{ES}s are DCFLs **BUT** 2 there is a DCFL but not a DCFL_{ES}.

$$L = \{a^n b^n \mid n \ge 0\} \in \mathsf{DCFL} \setminus \mathsf{DCFL}_{\mathsf{ES}}$$

Why?

The DPDA needs to accept the following two words by empty stacks:

- $w = \epsilon \in L$
- $w = ab \in L$

However, if a DPDA accepts the ϵ by empty stacks, then the stack must be empty at the beginning.

Fact 3: DCFL_{ES} ⊊ DCFL

- $\widehat{\mbox{\fontfamily{1}}}$ All DCFL $\mbox{\fontfamily{2}}$ are DCFLs $\mbox{\fontfamily{2}}$ there is a DCFL but not a DCFL $\mbox{\fontfamily{2}}$.

$$L = \{a^n b^n \mid n \ge 0\} \in \mathsf{DCFL} \setminus \mathsf{DCFL}_{\mathsf{ES}}$$

Why?

The DPDA needs to accept the following two words by empty stacks:

- $w = \epsilon \in L$
- $w = ab \in L$

However, if a DPDA accepts the ϵ by empty stacks, then the stack must be empty at the beginning.

Thus, the PDA cannot accept ab by empty stacks.

Fact 3: DCFL_{ES} \subseteq DCFL

- 1 All DCFL_{ES}s are DCFLs **BUT** 2 there is a DCFL but not a DCFL_{ES}.

$$L = \{a^n b^n \mid n \ge 0\} \in \mathsf{DCFL} \setminus \mathsf{DCFL}_{\mathsf{ES}}$$

Why?

The DPDA needs to accept the following two words by empty stacks:

- $w = \epsilon \in L$
- $w = ab \in L$

However, if a DPDA accepts the ϵ by empty stacks, then the stack must be empty at the beginning.

Thus, the PDA cannot accept ab by empty stacks.

We can generalize it as prefix property of DCFL_{ES}.

Definition (Prefix Property)

A language L has the **prefix property** if and only if for any word $w \in L$, any proper prefix of w is not in L:

$$\forall x, y \in \Sigma^*$$
. $((xy \in L \land y \neq \epsilon) \Longrightarrow x \notin L)$

Definition (Prefix Property)

A language L has the **prefix property** if and only if for any word $w \in L$, any proper prefix of w is not in L:

$$\forall x, y \in \Sigma^*$$
. $((xy \in L \land y \neq \epsilon) \Longrightarrow x \notin L)$

Fact 4: DCFL_{ES} = DCFL having Prefix Property

A language L is a DCFL_{ES} if and only if the language L is a DCFL having the **prefix property**.

Definition (Prefix Property)

A language L has the **prefix property** if and only if for any word $w \in L$, any proper prefix of w is not in L:

$$\forall x, y \in \Sigma^*$$
. $((xy \in L \land y \neq \epsilon) \Longrightarrow x \notin L)$

Fact 4: DCFL_{ES} = DCFL having Prefix Property

A language L is a DCFL_{ES} if and only if the language L is a DCFL having the **prefix property**.

For example, the following language is a **DCFL** but does **NOT** have the **prefix property** because $\epsilon \in L$ is a proper prefix of

$$L = \{a^n b^n \mid n \ge 0\}$$

Thus, L is a **DCFL** but **NOT** a **DCFL**_{ES}.

Fact 5: RL ⊄ DCFL_{ES}

Fact 5: RL ⊄ DCFL_{ES}

There exists a RL that is not a DCFL_{FS}.

Fact 5: RL $\not\subset$ DCFL_{ES}

There exists a RL that is not a DCFL_{FS}.

• RL \ DCFL_{ES} $\neq \emptyset$: For example, the following language is a **RL** but does **NOT** have the **prefix property**:

$$L = \{a^n \mid n \ge 0\} \in \mathsf{RL} \setminus \mathsf{DCFL}_{\mathsf{ES}}$$

Fact 5: $RL \not\subset DCFL_{ES}$

Fact 5: RL ⊄ DCFL_{ES}

There exists a RL that is not a DCFL_{FS}.

• RL \ DCFL_{ES} $\neq \emptyset$: For example, the following language is a **RL** but does **NOT** have the **prefix property**:

$$L = \{a^n \mid n \ge 0\} \in \mathsf{RL} \setminus \mathsf{DCFL}_{\mathsf{ES}}$$

because $aa \in L$ is a proper prefix of $aaaa \in L$.

Fact 5: $RL \not\subset DCFL_{ES}$

Fact 5: RL ⊄ DCFL_{ES}

There exists a RL that is not a DCFL_{FS}.

• RL \ DCFL_{ES} $\neq \emptyset$: For example, the following language is a **RL** but does **NOT** have the **prefix property**:

$$L = \{a^n \mid n \ge 0\} \in \mathsf{RL} \setminus \mathsf{DCFL}_{\mathsf{ES}}$$

because $aa \in L$ is a proper prefix of $aaaa \in L$.

Thus, L is a RL but NOT a DCFL_{ES}.

Contents

- 1. Deterministic Pushdown Automata (DPDA)
- 2. Deterministic Context-Free Languages (DCFLs)

Fact 1: DCFL \subsetneq CFL Fact 2: RL \subsetneq DCFL

3. Languages Accepted by Empty Stacks of DPDA (DCFL $_{\mathsf{ES}})$

Fact 3: $DCFL_{ES} \subsetneq DCFL$

Fact 4: DCFL_{ES} = DCFL having Prefix Property

Fact 5: $RL \not\subset DCFL_{ES}$

4. Inherent Ambiguity of DCFLs

Fact 6: DCFL \subseteq Non Inherently Ambiguous Languages

Inherent Ambiguity of DCFLs

Definition (Inherent Ambiguity)

A language L is **inherently ambiguous** if all CFGs whose languages are L are ambiguous. (i.e. there is no unambiguous grammar for L)

Inherent Ambiguity of DCFLs

Definition (Inherent Ambiguity)

A language L is **inherently ambiguous** if all CFGs whose languages are L are ambiguous. (i.e. there is no unambiguous grammar for L)

What is the relationship of inherently ambiguous languages and DCFLs?

Inherent Ambiguity of DCFLs

Definition (Inherent Ambiguity)

A language L is **inherently ambiguous** if all CFGs whose languages are L are ambiguous. (i.e. there is no unambiguous grammar for L)

What is the relationship of **inherently ambiguous languages** and DCFLs? It satisfies the following fact:

 $\mathsf{DCFL} \subsetneq \mathsf{Non} \mathsf{\ Inherently\ Ambiguous\ Languages}$

We prove this fact by the following three steps:

- ullet DCFL \subseteq Non Inherently Ambiguous Languages (using ullet)
- 3 Non Inherently Ambiguous Languages $\setminus DCFL \neq \emptyset$

Fact 6: DCFL \subsetneq Non Inherently Ambiguous Languages

Fact 6: DCFL ⊊ Non Inherently Ambiguous Languages

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

- **1** A DCFL_{ES} has an unambiguous grammar: For a given DCFL_{ES} L and its corresponding DPDA P, we can define a CFG for P as follows:
 - For all $0 \le j < n$,

$$S \to A_{0,j}^Z$$

• For all transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ where $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$ and combinations $0 \le k_1, \cdots, k_m < n$:

$$A_{i,k_m}^X o a A_{j,k_1}^{X_1} A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

- **1** A DCFL_{ES} has an unambiguous grammar: For a given DCFL_{ES} L and its corresponding DPDA P, we can define a CFG for P as follows:
 - For all $0 \le j < n$,

$$S \to A^Z_{0,j}$$

• For all transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ where $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$ and combinations $0 \le k_1, \cdots, k_m < n$:

$$A_{i,k_m}^X o a A_{j,k_1}^{X_1} A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

For any word $w \in L$, w has a unique moves from the initial configuration to the final configuration in P. And, we know that:

$$A_{i,j}^X \Rightarrow^* w$$
 if and only if $(q_i, w, X) \vdash^* (q_j, \epsilon, \epsilon)$

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

- **1** A DCFL_{ES} has an unambiguous grammar: For a given DCFL_{ES} L and its corresponding DPDA P, we can define a CFG for P as follows:
 - For all $0 \le j < n$,

$$S \to A^Z_{0,j}$$

• For all transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ where $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$ and combinations $0 \le k_1, \cdots, k_m < n$:

$$A_{i,k_m}^X o a A_{j,k_1}^{X_1} A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

For any word $w \in L$, w has a unique moves from the initial configuration to the final configuration in P. And, we know that:

$$A_{i,j}^X \Rightarrow^* w$$
 if and only if $(q_i, w, X) \vdash^* (q_j, \epsilon, \epsilon)$

Thus, the above CFG is unambiguous.

PLRG

Fact 6: DCFL ⊊ Non Inherently Ambiguous Languages

Fact 6: DCFL ⊊ Non Inherently Ambiguous Languages

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

② A DCFL has an unambiguous grammar: For a given DCFL *L*, we can define another DCFL *L'* with a special symbol \$ as follows:

$$L' = L\$ = \{ w\$ \mid w \in L \}$$

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

2 A DCFL has an unambiguous grammar : For a given DCFL L, we can define another DCFL L' with a special symbol \$ as follows:

$$L' = L\$ = \{ w\$ \mid w \in L \}$$

Then, L' is a DCFL_{ES} because it has the **prefix property**, and L' has an **unambiguous grammar** G'.

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

2 A DCFL has an unambiguous grammar : For a given DCFL L, we can define another DCFL L' with a special symbol \$ as follows:

$$L' = L\$ = \{ w\$ \mid w \in L \}$$

Then, L' is a DCFL_{ES} because it has the **prefix property**, and L' has an **unambiguous grammar** G'. Now, we can define an **unambiguous grammar** G for L by treating S as a variable with a rule $S \to E$.

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

2 A DCFL has an unambiguous grammar : For a given DCFL L, we can define another DCFL L' with a special symbol \$ as follows:

$$L' = L\$ = \{ w\$ \mid w \in L \}$$

Then, L' is a DCFL_{ES} because it has the **prefix property**, and L' has an **unambiguous grammar** G'. Now, we can define an **unambiguous grammar** G for L by treating S as a variable with a rule $S \to E$.

For example, $L = \{a^n b^n \mid n \ge 0\}$ is DCFL, then $L' = \{a^n b^n \} \mid n \ge 0\}$ is a DCFL_{ES} and its **unambiguous grammar** G' is:

$$S o X$$
\$ $X o aXb \mid \epsilon$

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

2 A DCFL has an unambiguous grammar : For a given DCFL L, we can define another DCFL L' with a special symbol \$ as follows:

$$L' = L\$ = \{ w\$ \mid w \in L \}$$

Then, L' is a DCFL_{ES} because it has the **prefix property**, and L' has an **unambiguous grammar** G'. Now, we can define an **unambiguous grammar** G for L by treating S as a variable with a rule $S \to E$.

For example, $L = \{a^nb^n \mid n \ge 0\}$ is DCFL, then $L' = \{a^nb^n \mid n \ge 0\}$ is a DCFL_{ES} and its **unambiguous grammar** G' is:

$$S o X$$
\$ $X o aXb \mid \epsilon$

Then, the **unambiguous grammar** G for L is:

$$S \rightarrow X$$
\$ $X \rightarrow aXb \mid \epsilon$ \$ $\rightarrow \epsilon$

Fact 6: DCFL \subsetneq Non Inherently Ambiguous Languages

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

Non Inherently Ambiguous Languages \setminus DCFL $\neq \varnothing$: The following language is a **non inherently ambiguous language** but **not** a **DCFL**:

$$L = \{ww^R \mid w \in \{a, b\}^*\}$$

All DCFLs have at least one corresponding unambiguous grammars **BUT** there exists a non inherently ambiguous language that is not a DCFL.

Non Inherently Ambiguous Languages \ DCFL $\neq \emptyset$: The following language is a **non inherently ambiguous language** but **not** a **DCFL**:

$$L = \{ww^R \mid w \in \{a, b\}^*\}$$

because the following **unambiguous grammar** G represents L:

$$S
ightarrow aSa \mid bSb \mid \epsilon$$

but we already know that *L* is **not** a **DCFL**.

Summary

Next Lecture

Normal Forms of Context-Free Grammars

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr