Lecture 18 – Normal Forms of Context-Free Grammars COSE215: Theory of Computation

Jihyeok Park

2024 Spring

Recall

• A context-free grammar (CFG) is a 4-tuple:

$$G = (V, \Sigma, S, R)$$

where

- V: a finite set of variables (nonterminals)
- Σ: a finite set of **symbols** (terminals)
- $S \in V$: the start variable
- $R \subseteq V \times (V \cup \Sigma)^*$: a set of **production rules**.
- How to simplify a CFG?

Recall

A context-free grammar (CFG) is a 4-tuple:

$$G = (V, \Sigma, S, R)$$

where

- V: a finite set of variables (nonterminals)
- Σ : a finite set of **symbols** (terminals)
- $S \in V$: the start variable
- $R \subseteq V \times (V \cup \Sigma)^*$: a set of **production rules**.
- How to simplify a CFG?

Let's put it in **Chomsky normal form (CNF)**!

Contents

- 1. Chomsky Normal Form (CNF)
- 2. Eliminating ϵ -Productions Nullable Variables
- 3. Eliminating Unit Productions
 Unit Pairs
- Eliminating Useless Variables
 Generating Variables
 Reachable Variables
- 5. Putting CFG in CNF

Contents

- 1. Chomsky Normal Form (CNF)
- 2. Eliminating ϵ -Productions Nullable Variables
- Eliminating Unit Productions Unit Pairs
- Eliminating Useless Variables Generating Variables Reachable Variables
- 5. Putting CFG in CNF

Definition (Chomsky Normal Form)

A CFG is in **Chomsky normal form (CNF)** if all productions are of the form for some $A, B, C \in V$ and $a \in \Sigma$:

$$A \rightarrow BC$$
 OR $A \rightarrow a$ OR $S \rightarrow \epsilon$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

Definition (Chomsky Normal Form)

A CFG is in **Chomsky normal form (CNF)** if all productions are of the form for some $A, B, C \in V$ and $a \in \Sigma$:

$$A o BC$$
 OR $A o a$ OR $S o \epsilon$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

Consider the following CFG:

$$S
ightarrow 0ABC \mid 1B \mid BB \quad A
ightarrow ABB0 \mid C \quad C
ightarrow CC \mid \epsilon \ B
ightarrow 0B \mid 1 \qquad D
ightarrow 1D \mid AA$$

Is it possible to put this CFG in CNF?

Definition (Chomsky Normal Form)

A CFG is in **Chomsky normal form (CNF)** if all productions are of the form for some $A, B, C \in V$ and $a \in \Sigma$:

$$A o BC$$
 OR $A o a$ OR $S o \epsilon$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

Consider the following CFG:

$$S
ightarrow 0ABC \mid 1B \mid BB \quad A
ightarrow ABB0 \mid C \quad C
ightarrow CC \mid \epsilon \ B
ightarrow 0B \mid 1 \qquad D
ightarrow 1D \mid AA$$

Is it possible to put this CFG in CNF? Yes!

Definition (Chomsky Normal Form)

A CFG is in **Chomsky normal form (CNF)** if all productions are of the form for some $A, B, C \in V$ and $a \in \Sigma$:

$$A o BC$$
 OR $A o a$ OR $S o \epsilon$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

Consider the following CFG:

$$S
ightarrow 0ABC \mid 1B \mid BB \quad A
ightarrow ABB0 \mid C \quad C
ightarrow CC \mid \epsilon \ B
ightarrow 0B \mid 1 \qquad D
ightarrow 1D \mid AA$$

Is it possible to put this CFG in CNF? Yes!

Let's learn how to put a CFG in CNF!

Contents

- 1. Chomsky Normal Form (CNF)
- 2. Eliminating ϵ -Productions Nullable Variables
- Eliminating Unit Productions Unit Pairs
- Eliminating Useless Variables Generating Variables Reachable Variables
- 5. Putting CFG in CNF

The following productions are called ϵ -productions:

$$A \rightarrow \epsilon$$

Is it possible to eliminate all ϵ -productions from a CFG?

The following productions are called ϵ -productions:

$$A \rightarrow \epsilon$$

Is it possible to eliminate all $\epsilon\text{-productions}$ from a CFG?

No, we cannot generate the empty word without ϵ -productions even though it is in the language of the CFG (i.e., $\epsilon \in L(G)$).

The following productions are called ϵ -productions:

$$A \rightarrow \epsilon$$

Is it possible to eliminate all ϵ -productions from a CFG?

No, we cannot generate the empty word without ϵ -productions even though it is in the language of the CFG (i.e., $\epsilon \in L(G)$).

However, we can eliminate all ϵ -productions from a CFG G to construct a new CFG G' such that:

$$L(G') = L(G) \setminus \{\epsilon\}$$

The following productions are called ϵ -productions:

$$A \rightarrow \epsilon$$

Is it possible to eliminate all ϵ -productions from a CFG?

No, we cannot generate the empty word without ϵ -productions even though it is in the language of the CFG (i.e., $\epsilon \in L(G)$).

However, we can eliminate all ϵ -productions from a CFG G to construct a new CFG G' such that:

$$L(G') = L(G) \setminus \{\epsilon\}$$

We can do it by following the steps below:

- 1 Find all nullable variables.
- **2** Construct a new CFG by **replacing** nullable variables with ϵ in **all combinations** and **removing** all ϵ -productions in production rules.

Nullable Variables

Definition (Nullable Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is **nullable** if

$$A \Rightarrow^* \epsilon$$

Nullable Variables

Definition (Nullable Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is **nullable** if

$$A \Rightarrow^* \epsilon$$

We can inductively define the set of **nullable variables**:

- (Basis Case) If $A \rightarrow \epsilon \in R$, then A is nullable.
- (Induction Case) If $A \to X_1 X_2 \cdots X_n \in R$ and X_1, X_2, \dots, X_n are all nullable, then A is nullable.

Consider the following CFG:

$$S \rightarrow 0ABC \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid C$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC \mid \epsilon$
 $D \rightarrow 1D \mid AA$

• Find all nullable variables:

Consider the following CFG:

$$S \rightarrow 0ABC \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid C$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC \mid \epsilon$
 $D \rightarrow 1D \mid AA$

1 Find all **nullable variables**: $\{A, C, D\}$

Consider the following CFG:

$$\begin{array}{l} S \rightarrow 0ABC \mid 1B \mid BB \\ A \rightarrow ABB0 \mid C \\ B \rightarrow 0B \mid 1 \\ C \rightarrow CC \mid \epsilon \\ D \rightarrow 1D \mid AA \end{array}$$

- **1** Find all **nullable variables**: $\{A, C, D\}$
- **2** Construct a new CFG by **replacing** nullable variables with ϵ in **all combinations** and **removing** all ϵ -productions in production rules:

Consider the following CFG:

$$S \rightarrow 0ABC \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid C$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC \mid \epsilon$
 $D \rightarrow 1D \mid AA$

- **1** Find all **nullable variables**: $\{A, C, D\}$
- **2** Construct a new CFG by **replacing** nullable variables with ϵ in **all combinations** and **removing** all ϵ -productions in production rules:

$$S o 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB \mid A o ABB0 \mid BB0 \mid C \mid B o 0B \mid 1 \mid C o CC \mid C \mid C \mid D o 1D \mid 1 \mid AA \mid A$$

Contents

- 1. Chomsky Normal Form (CNF)
- 2. Eliminating ϵ -Productions Nullable Variables
- 3. Eliminating Unit Productions
 Unit Pairs
- Eliminating Useless Variables Generating Variables Reachable Variables
- 5. Putting CFG in CNF

Eliminating Unit Productions

The following productions are called **unit productions**:

$$A \rightarrow B$$

Eliminating Unit Productions

The following productions are called **unit productions**:

$$A \rightarrow B$$

Is it possible to eliminate unit productions?

Eliminating Unit Productions

The following productions are called **unit productions**:

$$A \rightarrow B$$

Is it possible to eliminate unit productions?

Yes, we can do it by following the steps below:

- Find all unit pairs.
- **2** Construct a new CFG by **adding** all possible non-unit productions of B to A for each unit pair (A, B).

Unit Pairs

Definition (Unit Pairs)

For a given CFG $G = (V, \Sigma, S, R)$, a pair of variables $(A, B) \in V \times V$ is a **unit pair** if

$$A \Rightarrow^* B$$

Unit Pairs

Definition (Unit Pairs)

For a given CFG $G = (V, \Sigma, S, R)$, a pair of variables $(A, B) \in V \times V$ is a **unit pair** if

$$A \Rightarrow^* B$$

We can inductively define the set of unit pairs:

- (Basis Case) (A, A) is a unit pair for all $A \in V$.
- (Induction Case) If (A, B) is a unit pair and $B \to C \in R$, then (A, C) is a unit pair.

Eliminating Unit Productions – Example

After eliminating ϵ -productions:

$$S o 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

 $A o ABB0 \mid BB0 \mid C$
 $B o 0B \mid 1$
 $C o CC \mid C$
 $D o 1D \mid 1 \mid AA \mid A$

• Find all unit pairs:

Eliminating Unit Productions - Example

After eliminating ϵ -productions:

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

$$A \rightarrow ABB0 \mid BB0 \mid C$$

$$B \rightarrow 0B \mid 1$$

$$C \rightarrow CC \mid C$$

$$D \rightarrow 1D \mid 1 \mid AA \mid A$$

Find all unit pairs:

$$\{(S,S),(A,A),(A,C),(B,B),(C,C),(D,D),(D,A),(D,C)\}$$

Eliminating Unit Productions - Example

After eliminating ϵ -productions:

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0 \mid C$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC \mid C$
 $D \rightarrow 1D \mid 1 \mid AA \mid A$

Find all unit pairs:

$$\{(S,S),(A,A),(A,C),(B,B),(C,C),(D,D),(D,A),(D,C)\}$$

2 Construct a new CFG by **adding** all possible non-unit productions of B to A for each unit pair (A, B).

Eliminating Unit Productions - Example

After eliminating ϵ -productions:

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0 \mid C$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC \mid C$
 $D \rightarrow 1D \mid 1 \mid AA \mid A$

Find all unit pairs:

$$\{(S,S),(A,A),(A,C),(B,B),(C,C),(D,D),(D,A),(D,C)\}$$

2 Construct a new CFG by adding all possible non-unit productions of B to A for each unit pair (A, B).

$$S
ightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

 $A
ightarrow ABB0 \mid BB0 \mid CC$
 $B
ightarrow 0B \mid 1$
 $C
ightarrow CC$
 $D
ightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC$

Contents

- 1. Chomsky Normal Form (CNF)
- 2. Eliminating ϵ -Productions Nullable Variables
- Eliminating Unit Productions Unit Pairs
- Eliminating Useless Variables
 Generating Variables
 Reachable Variables
- 5. Putting CFG in CNF

Eliminating Useless Variables

What are useless variables?

- **Non-generating variables**: Variables that cannot derive any word.
- Unreachable variables: Variables unreachable from the start variable.

Is it possible to eliminate useless variables?

Eliminating Useless Variables

What are useless variables?

- **Non-generating variables**: Variables that cannot derive any word.
- Unreachable variables: Variables unreachable from the start variable.

Is it possible to eliminate useless variables?

Yes, we can do it by following the steps below:

- Find all generating variables.
- Pind all reachable variables.
- 3 Construct a new CFG by removing all productions that contain non-generating variables or come from unreachable variables.

Generating Variables

Definition (Generating Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is a **generating** variable if for some $w \in \Sigma^*$,

$$A \Rightarrow^* w$$

Generating Variables

Definition (Generating Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is a **generating** variable if for some $w \in \Sigma^*$,

$$A \Rightarrow^* w$$

We can inductively define the set of **generating variables**:

- (Basis Case) There is no basis case.
- (Induction Case) If $A \to \alpha \in R$ and α contains only symbols or generating variables, then A is a generating variable.

Reachable Variables

Definition (Reachable Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is a **reachable** variable if there exists a derivation:

$$S \Rightarrow^* \alpha A \beta$$

Reachable Variables

Definition (Reachable Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is a **reachable** variable if there exists a derivation:

$$S \Rightarrow^* \alpha A\beta$$

We can inductively define the set of reachable variables:

- (Basis Case) The start variable S is reachable variable.
- (Induction Case) If $A \in V$ is a reachable variable and $A \to \alpha \in R$, then all variables in α are reachable variables.

After eliminating ϵ -productions and unit productions:

$$S
ightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

 $A
ightarrow ABB0 \mid BB0 \mid CC$
 $B
ightarrow 0B \mid 1$
 $C
ightarrow CC$
 $D
ightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC$

• Find all generating variables:

After eliminating ϵ -productions and unit productions:

$$S
ightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

 $A
ightarrow ABB0 \mid BB0 \mid CC$
 $B
ightarrow 0B \mid 1$
 $C
ightarrow CC$
 $D
ightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC$

1 Find all **generating variables**: $\{S, A, B, D\} - C$ is non-generating.

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0 \mid CC$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC$
 $D \rightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC$

- **1** Find all **generating variables**: $\{S, A, B, D\} C$ is non-generating.
- ② Find all reachable variables:

$$\begin{array}{l} S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB \\ A \rightarrow ABB0 \mid BB0 \mid CC \\ B \rightarrow 0B \mid 1 \\ C \rightarrow CC \\ D \rightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC \end{array}$$

- **1** Find all **generating variables**: $\{S, A, B, D\} C$ is non-generating.
- **2** Find all **reachable variables**: $\{S, A, B, C\} D$ is unreachable.

$$\begin{array}{l} S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB \\ A \rightarrow ABB0 \mid BB0 \mid CC \\ B \rightarrow 0B \mid 1 \\ C \rightarrow CC \\ D \rightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC \end{array}$$

- **1** Find all **generating variables**: $\{S, A, B, D\} C$ is non-generating.
- **2** Find all **reachable variables**: $\{S, A, B, C\} D$ is unreachable.
- 3 Construct a new CFG by removing all productions that contain non-generating variables or come from unreachable variables.

$$\begin{array}{l} S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB \\ A \rightarrow ABB0 \mid BB0 \mid CC \\ B \rightarrow 0B \mid 1 \\ C \rightarrow CC \\ D \rightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC \end{array}$$

- **1** Find all **generating variables**: $\{S, A, B, D\} C$ is non-generating.
- **2** Find all **reachable variables**: $\{S, A, B, C\} D$ is unreachable.
- 3 Construct a new CFG by removing all productions that contain non-generating variables or come from unreachable variables.

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

Contents

- 1. Chomsky Normal Form (CNF)
- 2. Eliminating ϵ -Productions Nullable Variables
- Eliminating Unit Productions Unit Pairs
- Eliminating Useless Variables Generating Variables Reachable Variables
- 5. Putting CFG in CNF

Our goal is to put a CFG in **Chomsky normal form (CNF)** consisting of:

$$A \rightarrow BC$$
 OR $A \rightarrow a$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

Our goal is to put a CFG in **Chomsky normal form (CNF)** consisting of:

$$A \rightarrow BC$$
 OR $A \rightarrow a$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

We can put a CFG in CNF by following the steps below:

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

Our goal is to put a CFG in **Chomsky normal form (CNF)** consisting of:

$$A \rightarrow BC$$
 OR $A \rightarrow a$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

- lacktriangledown If S on RHSs, add a new start variable S' and a production S' o S.
- **2** Eliminate ϵ -productions, unit productions, and useless variables.

Our goal is to put a CFG in **Chomsky normal form (CNF)** consisting of:

$$A \rightarrow BC$$
 OR $A \rightarrow a$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

- **1** If S on RHSs, add a new start variable S' and a production $S' \to S$.
- **2** Eliminate ϵ -productions, unit productions, and useless variables.
- **3** Arrange so that all RHSs whose length is greater than 1 consist only of variables. To do so, if terminal a appears in a RHS, then replace it with a new variable A and add a production $A \rightarrow a$.

Our goal is to put a CFG in **Chomsky normal form (CNF)** consisting of:

$$A \rightarrow BC$$
 OR $A \rightarrow a$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

- **1** If S on RHSs, add a new start variable S' and a production $S' \to S$.
- **2** Eliminate ϵ -productions, unit productions, and useless variables.
- Arrange so that all RHSs whose length is greater than 1 consist only of variables. To do so, if terminal a appears in a RHS, then replace it with a new variable A and add a production $A \rightarrow a$.
- Replace all RHSs whose length is greater than 2 with a chain of variables. To do so, if $A \to X_1 X_2 \cdots X_n$ is a production with n > 2, then replace it with a sequence of productions:

$$A \rightarrow X_1 A_1$$

$$A_1 \rightarrow X_2 A_2$$

$$A \rightarrow X_1 A_1$$
 $A_1 \rightarrow X_2 A_2$ \cdots $A_{n-2} \rightarrow X_{n-1} X_n$

Our goal is to put a CFG in **Chomsky normal form (CNF)** consisting of:

$$A o BC$$
 OR $A o a$

where $B \neq S$ and $C \neq S$. And $S \rightarrow \epsilon$ is allowed only if $\epsilon \in L(G)$.

We can put a CFG in CNF by following the steps below:

- **1** If S on RHSs, add a new start variable S' and a production $S' \to S$.
- **2** Eliminate ϵ -productions, unit productions, and useless variables.
- **3** Arrange so that all RHSs whose length is greater than 1 consist only of variables. To do so, if terminal a appears in a RHS, then replace it with a new variable A and add a production $A \rightarrow a$.
- **4** Replace all RHSs whose length is greater than 2 with a chain of variables. To do so, if $A \to X_1 X_2 \cdots X_n$ is a production with n > 2, then replace it with a sequence of productions:

$$A \rightarrow X_1 A_1$$
 $A_1 \rightarrow X_2 A_2$ \cdots $A_{n-2} \rightarrow X_{n-1} X_n$

5 If ϵ is in the original CFG, add a production $S \to \epsilon$ (or $S' \to \epsilon$).

Let's put the following CFG in CNF:

$$S \rightarrow 0ABC \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid C$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC \mid \epsilon$
 $D \rightarrow 1D \mid AA$

Let's put the following CFG in CNF:

$$S
ightarrow 0ABC \mid 1B \mid BB$$

 $A
ightarrow ABB0 \mid C$
 $B
ightarrow 0B \mid 1$
 $C
ightarrow CC \mid \epsilon$
 $D
ightarrow 1D \mid AA$

lacktriangle If S on RHSs, add a new start variable S' and a production S' o S.

Let's put the following CFG in CNF:

$$S \rightarrow 0ABC \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid C$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC \mid \epsilon$
 $D \rightarrow 1D \mid AA$

- **1** If S on RHSs, add a new start variable S' and a production $S' \to S$.
- **2** Eliminate ϵ -productions, unit productions, and useless variables:

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

 \blacksquare Arrange so that all RHSs whose length > 1 consist only of variables:

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

 $oldsymbol{3}$ Arrange so that all RHSs whose length >1 consist only of variables:

$$S o XAB \mid XB \mid YB \mid BB \quad X o 0$$

 $A o ABBX \mid BBX \qquad Y o 1$
 $B o XB \mid 1$

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

 $oldsymbol{3}$ Arrange so that all RHSs whose length >1 consist only of variables:

4 Replace all RHSs whose length > 2 with a chain of variables:

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

 $oldsymbol{3}$ Arrange so that all RHSs whose length >1 consist only of variables:

$$S \rightarrow XAB \mid XB \mid YB \mid BB \quad X \rightarrow 0$$

 $A \rightarrow ABBX \mid BBX \quad Y \rightarrow 1$
 $B \rightarrow XB \mid 1$

4 Replace all RHSs whose length > 2 with a chain of variables:

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

 $oldsymbol{3}$ Arrange so that all RHSs whose length >1 consist only of variables:

4 Replace all RHSs whose length > 2 with a chain of variables:

6 If ϵ is in the original CFG, add a production $S \to \epsilon$ (or $S' \to \epsilon$):

$$\begin{array}{l} S \rightarrow 0AB \mid 0B \mid 1B \mid BB \\ A \rightarrow ABB0 \mid BB0 \\ B \rightarrow 0B \mid 1 \end{array}$$

 $oldsymbol{3}$ Arrange so that all RHSs whose length >1 consist only of variables:

$$S \rightarrow XAB \mid XB \mid YB \mid BB \quad X \rightarrow 0$$

 $A \rightarrow ABBX \mid BBX \quad Y \rightarrow 1$
 $B \rightarrow XB \mid 1$

4 Replace all RHSs whose length > 2 with a chain of variables:

5 If ϵ is in the original CFG, add a production $S \to \epsilon$ (or $S' \to \epsilon$): **No.**

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

Let's put the following CFG in CNF:

$$S o aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S \qquad S o aSb \mid \epsilon$$

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S \qquad S o aSb \mid \epsilon$$

2 Eliminate ϵ -productions, unit productions, and useless variables:

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S$$
 $S o aSb \mid \epsilon$

2 Eliminate ϵ -productions, unit productions, and useless variables:

$$S' o aSb \mid ab$$
 $S o aSb \mid ab$

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S$$
 $S o aSb \mid \epsilon$

2 Eliminate ϵ -productions, unit productions, and useless variables:

$$S' o aSb \mid ab$$
 $S o aSb \mid ab$

 $oldsymbol{3}$ Arrange so that all RHSs whose length >1 consist only of variables:

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S$$
 $S o aSb \mid \epsilon$

2 Eliminate ϵ -productions, unit productions, and useless variables:

$$S' o aSb \mid ab$$
 $S o aSb \mid ab$

$$S' \rightarrow ASB \mid AB$$
 $S \rightarrow ASB \mid AB$ $A \rightarrow a$ $B \rightarrow b$

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S \qquad S o aSb \mid \epsilon$$

2 Eliminate ϵ -productions, unit productions, and useless variables:

$$S' o aSb \mid ab$$
 $S o aSb \mid ab$

 $\ensuremath{\mathfrak{3}}$ Arrange so that all RHSs whose length >1 consist only of variables:

$$S' \rightarrow ASB \mid AB$$
 $S \rightarrow ASB \mid AB$ $A \rightarrow a$ $B \rightarrow b$

4 Replace all RHSs whose length > 2 with a chain of variables:

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S \qquad S o aSb \mid \epsilon$$

2 Eliminate ϵ -productions, unit productions, and useless variables:

$$S' o aSb \mid ab$$
 $S o aSb \mid ab$

 $\ensuremath{\mathfrak{g}}$ Arrange so that all RHSs whose length >1 consist only of variables:

$$S' o ASB \mid AB$$
 $S o ASB \mid AB$ $A o a$ $B o b$

4 Replace all RHSs whose length > 2 with a chain of variables:

$$S' o AS_1 \mid AB \quad S o AS_1 \mid AB \quad S_1 o SB \quad A o a \quad B o b$$

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S \qquad S o aSb \mid \epsilon$$

2 Eliminate ϵ -productions, unit productions, and useless variables:

$$S' o aSb \mid ab$$
 $S o aSb \mid ab$

 $\ensuremath{\mathfrak{3}}$ Arrange so that all RHSs whose length >1 consist only of variables:

$$S' \rightarrow ASB \mid AB$$
 $S \rightarrow ASB \mid AB$ $A \rightarrow a$ $B \rightarrow b$

4 Replace all RHSs whose length > 2 with a chain of variables:

$$S' \rightarrow AS_1 \mid AB \quad S \rightarrow AS_1 \mid AB \quad S_1 \rightarrow SB \quad A \rightarrow a \quad B \rightarrow b$$

5 If ϵ is in the original CFG, add a production $S \to \epsilon$ (or $S' \to \epsilon$):

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S \qquad S o aSb \mid \epsilon$$

2 Eliminate ϵ -productions, unit productions, and useless variables:

$$S' o aSb \mid ab$$
 $S o aSb \mid ab$

 $oldsymbol{3}$ Arrange so that all RHSs whose length >1 consist only of variables:

$$S' o ASB \mid AB$$
 $S o ASB \mid AB$ $A o a$ $B o b$

4 Replace all RHSs whose length > 2 with a chain of variables:

$$S' o AS_1 \mid AB \quad S o AS_1 \mid AB \quad S_1 o SB \quad A o a \quad B o b$$

⑤ If ϵ is in the original CFG, add a production $S \to \epsilon$ (or $S' \to \epsilon$): **Yes.**

$$S'
ightarrow \epsilon \mid AS_1 \mid AB \quad S
ightarrow AS_1 \mid AB \quad S_1
ightarrow SB \quad A
ightarrow a \quad B
ightarrow b$$

Summary

- 1. Chomsky Normal Form (CNF)
- 2. Eliminating ϵ -Productions Nullable Variables
- 3. Eliminating Unit Productions
 Unit Pairs
- Eliminating Useless Variables
 Generating Variables
 Reachable Variables
- 5. Putting CFG in CNF

Next Lecture

• Properties of Context-Free Languages

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr