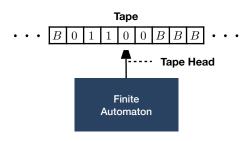
Lecture 24 – The Origin of Computer Science COSE215: Theory of Computation

Jihyeok Park

2024 Spring

Recall



- A Turing machine (TM) is a finite automaton with a tape.
- A language accepted by a TM is **Recursively Enumerable**.
- A standard TM is the most powerful model of computation.
- Why did Alan Turing invent the TM?
- Why is TM the origin of Computer Science?

1. Gödel's Incompleteness Theorem

Example: Continuum Hypothesis Gödel Numbering

2. Entscheidungsproblem – Decision Problem

Disproof using Turing Machine Disproof using Lambda Calculus

Gödel's Incompleteness Theorem
 Example: Continuum Hypothesis
 Gödel Numbering

 Entscheidungsproblem – Decision Problem Disproof using Turing Machine Disproof using Lambda Calculus

Gödel's Incompleteness Theorem

David Hilbert (1862 - 1943)

I argue that any mathematical statement is True or False!

Russell's Paradox

Really? How about the following statement? True or False? Let $R = \{x \mid x \notin x\}$, then $R \in R$?

Bertrand Russell (1872 – 1970)

David Hilbert (1862 – 1943)

Okay.. Then, let's **add more axioms** to avoid such paradoxes! (e.g., **ZFC** - **Z**ermelo–Fraenkel set theory with Axiom of **C**hoice)

1st Gödel's Incompleteness Theorem (1931)

Unfortunately, I proved that there always exists a statement that is **True** but **Unprovable** under **any set of axioms**.

Kurt Gödel (1906 – 1978)

Example: Continuum Hypothesis

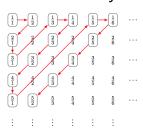
• Cardinality: The number of elements in a set.

$$|\{3,42,7\}|=3$$

- A set is **countably infinite** if there is a **bijection** between the set and the set of natural numbers (the cardinality of natural numbers is \aleph_0).
 - The set of non-negative even numbers is countably infinite.

$$\mathbb{N} \xrightarrow{f \atop f^{-1}} \{n \in \mathbb{N} \mid n \geq 0 \ \land \ n \equiv 0 \pmod{2}\} \text{ where } f(n) = 2n \text{ and } f^{-1}(n) = \frac{n}{2}$$

• The set of rational numbers is countably infinite.



Example: Continuum Hypothesis

• A set of **real numbers** between 0 and 1 is **uncountably infinite** and its cardinality $(\aleph_1 = 2^{\aleph_0})$ is strictly larger than the set of natural numbers $(\aleph_1 > \aleph_0)$ because of **Cantor's diagonal argument**:

n													
1	0		3	1	4	1	5	9	2	6	5	3	
2	0		3	7	3	7	3	7	3	7	3	7	
3	0		1	4	2	8	5	7	1	4	2	8	
4	0		7	0	7	1	0	6	7	8	1	1	
5	0		3	7	5	0	0	0	0	0	0	0	
	:												

• Continuum Hypothesis: There is no set whose cardinality is strictly between \aleph_0 and \aleph_1 :

$$\not\exists \aleph$$
. $\aleph_0 < \aleph < \aleph_1$

 Kurt Gödel and Paul Cohen showed we CANNOT either prove or disprove the Continuum Hypothesis using the standard axioms of set theory, ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice).

Gödel Numbering

 Gödel Numbering: Assign a unique number to each symbol and string in a formal language.

Symbol	~	V	\supset	3	=	0	5	()	,	+
Number	1	2	3	4	5	6	7	8	9	10	11
Symbol	×	X	у	Z	р	q	r	Р	Q	R	
Number	12	13	14	15	16	17	18	19	20	21	

We will use prime numbers to encode strings:

$$\operatorname{encode}(x_1\cdots x_n)=\prod_{i=1}^n p_i^{x_i}$$

where p_i is the i-th prime number.

- For example, $encode(0=0) = 2^6 \times 3^5 \times 5^6 = 243,000,000$.
- Gödel used this idea to encode formulas and proofs in first-order logic, and then proved his famous Incompleteness Theorem.¹

Gödel's Incompleteness Theorem
 Example: Continuum Hypothesis
 Gödel Numbering

Entscheidungsproblem – Decision Problem
 Disproof using Turing Machine
 Disproof using Lambda Calculus

Entscheidungsproblem – Decision Problem

David Hilbert (1862 – 1943)

Entscheidungsproblem - "Decision Problem" (1928)

I argue another one: there always exists an **algorithm** that takes a statement as an input and **decides** whether it is **True** or **False!**

Disproof using "Turing Machine" (1936)

Inspired by Gödel's Numbering, I defined "Turing Machines" as computation and proved such an algorithm does not exist.

Alan Turing (1912 - 1954)

Disproof using "Lambda Calculus" (1936)

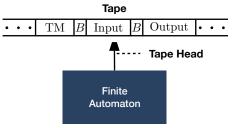
Inspired by Gödel's Numbering, I defined "Lambda Calculus" as computation and proved such an algorithm does not exist.

Alonzo Church (1903 – 1995)

- Turing Machine is the origin of computers.
- Lambda Calculus is the origin of programming languages.

Universal Turing Machine (UTM)

- Alan Turing's definition of computation Turing Machines (TMs).
- Inspired by Gödel Numbering, he defined an encoding of TMs that can be enumerated by natural numbers.
- Then, he defined a Universal Turing Machine (UTM) that can simulate any TM with any input:



 UTM was the most important invention in computer science because it was the first time we can write a program (software) instead of building a new machine (hardware) to solve a new problem.

Disproof using Turing Machine

- Assume a TM A solves the **Decision Problem**.
- We can build a TM H that solves the **Halting Problem** by using A:

$$\forall \ \mathsf{TM} \ \mathit{M}. \ \forall w \in \mathit{a}^*. \ \mathit{H}(\mathit{M}, w) = \left\{ egin{array}{ll} \mathsf{halt} & \mathsf{if} \ \mathit{A}("\mathit{M} \ \mathsf{halts} \ \mathsf{on} \ w") \\ \mathsf{loop} & \mathsf{otherwise} \end{array} \right.$$

Consider the following enumeration of TMs:

$$H(M_i, w_i)$$
 w_1 w_2 w_3 \cdots M_1 halt loop halt \cdots M_2 halt halt loop \cdots M_3 loop halt halt \cdots \vdots \vdots \vdots \vdots \vdots

- Consider the TM F s.t. $\forall i$. $F(w_i) = \begin{cases} \text{loop} & \text{if } H(M_i, w_i) = \text{halt} \\ \text{halt} & \text{otherwise} \end{cases}$
- Then, F is not in the enumeration (i.e., $F \neq M_i$ for all i). It contradicts the **enumerability of TMs**. So, A **does not exist.**

Lambda Calculus

 Alonzo Church's definition of computation is the Lambda Calculus (LC):

$$\Lambda \ni E ::= x$$
 (Variable)
 $\mid \quad \lambda x. \ E$ (Abstraction)
 $\mid \quad E \ E$ (Application)

• **Computations** are done by β -reduction:

$$(\lambda x. E) E' \rightarrow E[x \mapsto E']$$

For example,

$$(\lambda x. (\lambda y. x y)) z \rightarrow \lambda y. z y$$

- A computable function is a lambda term.
- If there is no more possible β -reduction, the term is in **normal form**.

Lambda Calculus - Church Encoding

- However, there is no data structures or control flows in LC.
- Surprisingly, we can **encode** them **Church Encoding**:

Boolean Values and Operations

true =
$$\lambda x$$
. λy . x
false = λx . λy . y
and = λb_1 . λb_2 . b_1 b_2 false
or = λb_1 . λb_2 . b_1 true b_2

Natural Numbers and Operations

$$0 = \lambda f. \ \lambda x. \ x$$

$$1 = \lambda f. \ \lambda x. \ f \ x$$

$$2 = \lambda f. \ \lambda x. \ f \ (f \ x)$$

$$3 = \lambda f. \ \lambda x. \ f \ (f \ (f \ x))$$
plus = $\lambda n_1. \ \lambda n_2. \ \lambda f. \ \lambda x. \ n_1 \ f \ (n_2 \ f \ x)$
times = $\lambda n_1. \ \lambda n_2. \ \lambda f. \ \lambda x. \ n_1 \ (n_2 \ f) \ x$
exp = $\lambda n_1. \ \lambda n_2. \ n_2. \ n_1$

Control Flows

if =
$$\lambda b$$
. λe_1 . λe_2 . b e_1 e_2
 $Y = \lambda f$. $(\lambda x. f(x x)) (\lambda x. f(x x))$

Pairs

pair =
$$\lambda x$$
. λy . λf . $f \times y$
fst = λp . $p(\lambda x$. λy . $x)$
snd = λp . $p(\lambda x$. λy . $y)$

Lists

$$\begin{aligned} &\text{nil} &= \lambda c. \ \lambda n. \ n \\ &\text{cons} &= \lambda h. \ \lambda t. \ \lambda c. \ \lambda n. \ c \ h \ (t \ c \ n) \\ &\text{head} &= \lambda l. \ l \ (\lambda h. \ \lambda t. \ h) \\ &\text{isnil} &= \lambda l. \ l \ (\lambda h. \ \lambda t. \ false) \ true \end{aligned}$$

Lambda Calculus - Church Encoding

$$\begin{array}{ll} 0 = \lambda f. \ \lambda x. \ x & \text{plus} = \lambda n_1. \ \lambda n_2. \ \lambda f. \ \lambda x. \ n_1 \ f \ (n_2 \ f \ x) \\ 1 = \lambda f. \ \lambda x. \ f \ x & \text{times} = \lambda n_1. \ \lambda n_2. \ \lambda f. \ \lambda x. \ n_1 \ (n_2 \ f) \ x \\ 2 = \lambda f. \ \lambda x. \ f \ (f \ x) & \text{exp} = \lambda n_1. \ \lambda n_2. \ n_2 \ n_1 \\ 3 = \lambda f. \ \lambda x. \ f \ (f \ (f \ x)) & \end{array}$$

For example, we can compute 1+1 as follows:

plus 1 1 =
$$(\lambda n_1. \lambda n_2. \lambda f. \lambda x. n_1 f (n_2 f x))$$
 1 1
 $\rightarrow \lambda f. \lambda x.$ 1 $f (1 f x)$
= $\lambda f. \lambda x. (\lambda f. \lambda x. f x) f ((\lambda f. \lambda x. f x) f x)$
 $\rightarrow \lambda f. \lambda x. (\lambda f. \lambda x. f x) f (f x)$
 $\rightarrow \lambda f. \lambda x. f (f x)$
= 2

The normal form (computational result) of (plus 1 1) is 2.

Disproof using Lambda Calculus

 Church proved that there is no computable function that can decide whether two lambda terms are equivalent or not:

$$\exists \ \mathsf{eq?} \in \Lambda. \ \forall \ E_1, E_2 \in \Lambda. \ (\mathsf{eq?} \ E_1 \ E_2) \to \begin{cases} \mathsf{true} & \mathsf{if} \ E_1 \equiv E_2 \\ \mathsf{false} & \mathsf{otherwise} \end{cases}$$

where $E_1 \equiv E_2$ means E_1 and E_2 are equivalent, i.e., they have the same **normal form** (computational result).

- For example, (plus 1 1) and 2 are equivalent in LC because they have the same normal form.
- It means that there is no computable function that can decide whether a lambda term has a given normal form or not.
- We skip the proof here.

Gödel's Incompleteness Theorem
 Example: Continuum Hypothesis
 Gödel Numbering

 Entscheidungsproblem – Decision Problem Disproof using Turing Machine Disproof using Lambda Calculus

Church-Turing Thesis

- LC has the same computational power as TMs. (Turing Complete)
- Church-Turing Thesis:

Any real-world computation can be translated into an equivalent computation involving a Turing machine or can be done using lambda calculus.

Summary

1. Gödel's Incompleteness Theorem

Example: Continuum Hypothesis Gödel Numbering

2. Entscheidungsproblem – Decision Problem

Disproof using Turing Machine Disproof using Lambda Calculus

Next Lecture

Undecidability

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr