Lecture 3 - Deterministic Finite Automata (DFA) COSE215: Theory of Computation

Jihyeok Park

a)PLRG

2024 Spring

Push
(1) Mathematical Preliminaries

- Mathematical Notations
- Inductive Proofs
- Notations in Languages
(2) Basic Introduction of Scala
- Basic Features
- Object-Oriented Programming (OOP)
- Functional Programming (FP)
- Immutable Collections (Data Structures)

Contents

1. Deterministic Finite Automata (DFA) Definition
Transition Diagram and Transition Table Extended Transition Function Acceptance of a Word Language of DFA (Regular Language) Examples

Definition of DFA

Definition (Deterministic Finite Automata (DFA))
A deterministic finite automaton (DFA) is a 5-tuple:

$$
D=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

- Q is a finite set of states
- Σ is a finite set of symbols
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Definition of DFA

Definition (Deterministic Finite Automata (DFA))

A deterministic finite automaton (DFA) is a 5-tuple:

$$
D=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

- Q is a finite set of states
- Σ is a finite set of symbols
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

$$
\begin{gathered}
D_{1}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{\mathrm{a}, \mathrm{~b}\}, \delta, q_{0},\left\{q_{2}\right\}\right) \\
\delta\left(q_{0}, \mathrm{a}\right)=q_{1} \\
\delta\left(q_{0}, \mathrm{~b}\right)=q_{0}
\end{gathered} \delta\left(q_{1}, \mathrm{a}\right)=q_{2} \quad \delta\left(q_{2}, \mathrm{a}\right)=q_{2}, ~ \delta\left(q_{1}, \mathrm{~b}\right)=q_{0} \quad \delta\left(q_{2}, \mathrm{~b}\right)=q_{0} .
$$

Definition of DFA

```
// The type definitions of states and symbols
type State = Int
type Symbol = Char
// The definition of DFA
case class DFA(
    states: Set[State],
    symbols: Set[Symbol],
    trans: Map[(State, Symbol), State],
    initState: State,
    finalStates: Set[State],
)
```


Definition of DFA

```
// The type definitions of states and symbols
type State = Int
type Symbol = Char
// The definition of DFA
case class DFA(
    states: Set[State],
    symbols: Set[Symbol],
    trans: Map[(State, Symbol), State],
    initState: State,
    finalStates: Set[State],
)
```

```
// An example of DFA
val dfa1: DFA = DFA(
    states = Set(0, 1, 2),
    symbols = Set('a', 'b'),
    trans = Map(
        (0, 'a') -> 1, (1, 'a') -> 2, (2, 'a') -> 2,
        (0, 'b') >> 0, (1, 'b') >> 0, (2, 'b') >> 0,
    ),
    initState = 0,
    finalStates = Set(2),
)
```


Transition Diagram and Transition Table

$$
D_{1}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{\mathrm{a}, \mathrm{~b}\}, \delta, q_{0},\left\{q_{2}\right\}\right)
$$

$$
\begin{array}{lll}
\delta\left(q_{0}, \mathrm{a}\right)=q_{1} & \delta\left(q_{1}, \mathrm{a}\right)=q_{2} & \delta\left(q_{2}, \mathrm{a}\right)=q_{2} \\
\delta\left(q_{0}, \mathrm{~b}\right)=q_{0} & \delta\left(q_{1}, \mathrm{~b}\right)=q_{0} & \delta\left(q_{2}, \mathrm{~b}\right)=q_{0}
\end{array}
$$

Transition Diagram

Transition Table

q	a	b
$\rightarrow q_{0}$	q_{1}	q_{0}
q_{1}	q_{2}	q_{0}
$* q_{2}$	q_{2}	q_{0}

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

$$
\begin{aligned}
\delta^{*}\left(q_{0}, \mathrm{baa}\right) & =\delta^{*}\left(\delta\left(q_{0}, \mathrm{~b}\right), \mathrm{aa}\right)=\delta^{*}\left(q_{0}, \mathrm{aa}\right) \\
& =\delta^{*}\left(\delta\left(q_{0}, \mathrm{a}\right), \mathrm{a}\right)=\delta^{*}\left(q_{1}, \mathrm{a}\right)
\end{aligned}
$$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

$$
\begin{aligned}
\delta^{*}\left(q_{0}, \mathrm{baa}\right) & =\delta^{*}\left(\delta\left(q_{0}, \mathrm{~b}\right), \mathrm{aa}\right)=\delta^{*}\left(q_{0}, \mathrm{aa}\right) \\
& =\delta^{*}\left(\delta\left(q_{0}, \mathrm{a}\right), \mathrm{a}\right)=\delta^{*}\left(q_{1}, \mathrm{a}\right) \\
& =\delta^{*}\left(\delta\left(q_{1}, \mathrm{a}\right), \epsilon\right)=\delta^{*}\left(q_{2}, \epsilon\right)
\end{aligned}
$$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

$$
\begin{aligned}
\delta^{*}\left(q_{0}, \mathrm{baa}\right) & =\delta^{*}\left(\delta\left(q_{0}, \mathrm{~b}\right), \text { aa }\right)=\delta^{*}\left(q_{0}, \mathrm{aa}\right) \\
& =\delta^{*}\left(\delta\left(q_{0}, \mathrm{a}\right), \mathrm{a}\right)=\delta^{*}\left(q_{1}, \mathrm{a}\right) \\
& =\delta^{*}\left(\delta\left(q_{1}, \mathrm{a}\right), \epsilon\right)=\delta^{*}\left(q_{2}, \epsilon\right) \\
& =q_{2}
\end{aligned}
$$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

$$
\begin{aligned}
\delta^{*}\left(q_{0}, \mathrm{aba}\right) & =\delta^{*}\left(\delta\left(q_{0}, \mathrm{a}\right), \mathrm{ba}\right)=\delta^{*}\left(q_{1}, \mathrm{ba}\right) \\
& =\delta^{*}\left(\delta\left(q_{1}, \mathrm{~b}\right), \mathrm{a}\right)=\delta^{*}\left(q_{0}, \mathrm{a}\right)
\end{aligned}
$$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

$$
\begin{aligned}
\delta^{*}\left(q_{0}, \mathrm{aba}\right) & =\delta^{*}\left(\delta\left(q_{0}, \mathrm{a}\right), \mathrm{ba}\right)=\delta^{*}\left(q_{1}, \mathrm{ba}\right) \\
& =\delta^{*}\left(\delta\left(q_{1}, \mathrm{~b}\right), \mathrm{a}\right)=\delta^{*}\left(q_{0}, \mathrm{a}\right) \\
& =\delta^{*}\left(\delta\left(q_{0}, \mathrm{a}\right), \epsilon\right)=\delta^{*}\left(q_{1}, \epsilon\right)
\end{aligned}
$$

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined as follows:

- (Basis Case) $\delta^{*}(q, \epsilon)=q$
- (Induction Case) $\delta^{*}(q, a w)=\delta^{*}(\delta(q, a), w)$ where $a \in \Sigma, w \in \Sigma^{*}$

$$
\begin{aligned}
\delta^{*}\left(q_{0}, \mathrm{aba}\right) & =\delta^{*}\left(\delta\left(q_{0}, \mathrm{a}\right), \mathrm{ba}\right)=\delta^{*}\left(q_{1}, \mathrm{ba}\right) \\
& =\delta^{*}\left(\delta\left(q_{1}, \mathrm{~b}\right), \mathrm{a}\right)=\delta^{*}\left(q_{0}, \mathrm{a}\right) \\
& =\delta^{*}\left(\delta\left(q_{0}, \mathrm{a}\right), \epsilon\right)=\delta^{*}\left(q_{1}, \epsilon\right) \\
& =q_{1}
\end{aligned}
$$

Extended Transition Function

```
// The type definition of words
type Word = String
case class DFA(...):
    // The extended transition function of DFA
    def extTrans(q: State, w: Word): State = w match
        case "" => q
        case x <l w => extTrans(trans(q, x), w)
// An example transition for a word "baa"
dfa1.extTrans(0, "baa") // 2
// An example transition for a word "aba"
dfa1.extTrans(0, "aba") // 1
```

where <l is a helper function to extract the first symbol and the rest of the word but you do not need to understand the details of how it works.

```
// A helper function to extract first symbol and rest of word
object `<l` { def unapply(w: Word) = w.headOption.map((_, w.drop(1))) }
```


Acceptance of a Word

Definition (Acceptance of a Word)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we say that D accepts a word $w \in \Sigma^{*}$ if and only if $\delta^{*}\left(q_{0}, w\right) \in F$

Acceptance of a Word

Definition (Acceptance of a Word)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we say that D accepts a word $w \in \Sigma^{*}$ if and only if $\delta^{*}\left(q_{0}, w\right) \in F$

$$
\delta^{*}\left(q_{0}, \mathrm{baa}\right)=q_{2} \in F
$$

It means that D_{1} accepts baa.

Acceptance of a Word

Definition (Acceptance of a Word)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we say that D accepts a word $w \in \Sigma^{*}$ if and only if $\delta^{*}\left(q_{0}, w\right) \in F$

$$
\delta^{*}\left(q_{0}, \mathrm{baa}\right)=q_{2} \in F
$$

It means that D_{1} accepts baa.

$$
\delta^{*}\left(q_{0}, \mathrm{aba}\right)=q_{1} \notin F
$$

It means that D_{1} does not accept aba.

Acceptance of a Word


```
case class DFA(...):
```

 // The acceptance of a word by DFA
 def accept(w: Word) : Boolean =
 finalStates.contains(extTrans(initState, w))
    ```
// An example acceptance of a word "baa"
dfa1.accept("baa") // true
```

// An example non-acceptance of a word "aba"
dfa1.accept("aba") // false

Language of DFA (Regular Language)

Definition (Language of DFA)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of D is defined as:

$$
L(D)=\left\{w \in \Sigma^{*} \mid D \text { accepts } w\right\}
$$

Language of DFA (Regular Language)

Definition (Language of DFA)

For a given DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of D is defined as:

$$
L(D)=\left\{w \in \Sigma^{*} \mid D \text { accepts } w\right\}
$$

Definition (Regular Language)

A language L is regular if and only if there exists a DFA D such that $L(D)=L$

Example 1

Example 1

$$
\delta^{*}\left(q_{0}, \mathrm{baa}\right)=q_{2} \in F
$$

Example 1

$$
\begin{aligned}
& \delta^{*}\left(q_{0}, \text { baa }\right)=q_{2} \in F \\
\Rightarrow \quad & D_{1} \text { accepts baa }
\end{aligned}
$$

Example 1

$D_{1}=$ start \rightarrow coseres
$\delta^{*}\left(q_{0}, \mathrm{baa}\right)=q_{2} \in F$
$\Rightarrow \quad D_{1}$ accepts baa
\Rightarrow baa $\in L\left(D_{1}\right)$

Example 1

$\epsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aab}, \mathrm{aba}, \mathrm{abb}, \mathrm{bab}, \cdots \notin L\left(D_{1}\right)$

Example 1

$\epsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aab}, \mathrm{aba}, \mathrm{abb}, \mathrm{bab}, \cdots \notin L\left(D_{1}\right)$
aa, aaa, baa, aaaa, abaa, baaa, bbaa, $\cdots \in L\left(D_{1}\right)$

Example 1

$\epsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aab}, \mathrm{aba}, \mathrm{abb}, \mathrm{bab}, \cdots \notin L\left(D_{1}\right)$
aa, aaa, baa, aaaa, abaa, baaa, bbaa, $\cdots \in L\left(D_{1}\right)$

$$
L\left(D_{1}\right)=\left\{w a \mathrm{a} \mid w \in\{\mathrm{a}, \mathrm{~b}\}^{*}\right\}
$$

Example 1

$$
\delta^{*}\left(q_{0}, \text { baa }\right)=q_{2} \in F
$$

$$
\Rightarrow \quad D_{1} \text { accepts baa }
$$

$$
\Rightarrow \quad \text { baa } \in L\left(D_{1}\right)
$$

$\epsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aab}, \mathrm{aba}, \mathrm{abb}, \mathrm{bab}, \cdots \notin L\left(D_{1}\right)$
aa, aaa, baa, aaaa, abaa, baaa, bbaa, $\cdots \in L\left(D_{1}\right)$

$$
L\left(D_{1}\right)=\left\{w a \mathrm{a} \mid w \in\{\mathrm{a}, \mathrm{~b}\}^{*}\right\}
$$

- q_{0} represents ϵ or any word ending with b
- q_{1} represents any word ending with exactly one a
- q_{2} represents any word ending with at least two a's

Example 2

$$
D_{2}=
$$

Example 2

$$
D_{2}=\overbrace{\text { start } \rightarrow}^{\mathrm{a}} \rightarrow \overbrace{}^{\mathrm{a}, \mathrm{~b}}
$$

$\epsilon, \mathrm{a}, \mathrm{aa}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aba}, \mathrm{abb}, \mathrm{baa}, \mathrm{bab}, \mathrm{bba}, \cdots \notin L\left(D_{2}\right)$

Example 2

$$
D_{2}=
$$

$\epsilon, \mathrm{a}, \mathrm{aa}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aba}, \mathrm{abb}, \mathrm{baa}, \mathrm{bab}, \mathrm{bba}, \cdots \notin L\left(D_{2}\right)$
b, ab, aab, aaab, aaaab, aaaaab, aaaaaab, $\cdots \in L\left(D_{2}\right)$

Example 2

$$
D_{2}=\overbrace{\text { start } \rightarrow q^{2}}^{\mathrm{a}}
$$

$\epsilon, \mathrm{a}, \mathrm{aa}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aba}, \mathrm{abb}, \mathrm{baa}, \mathrm{bab}, \mathrm{bba}, \cdots \notin L\left(D_{2}\right)$
b, ab, aab, aaab, aaaab, aaaaab, aaaaaab, $\cdots \in L\left(D_{2}\right)$

$$
L\left(D_{2}\right)=\left\{\mathrm{a}^{n} \mathrm{~b} \mid n \geq 0\right\}
$$

Example 2

$$
D_{2}=\overbrace{\text { start } \rightarrow}^{\mathrm{a}} \rightarrow \overbrace{}^{\mathrm{a}, \mathrm{~b}}
$$

$\epsilon, \mathrm{a}, \mathrm{aa}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aba}, \mathrm{abb}, \mathrm{baa}, \mathrm{bab}, \mathrm{bba}, \cdots \notin L\left(D_{2}\right)$
b, ab, aab, aaab, aaaab, aaaaab, aaaaab, $\cdots \in L\left(D_{2}\right)$

$$
L\left(D_{2}\right)=\left\{\mathrm{a}^{n} \mathrm{~b} \mid n \geq 0\right\}
$$

- q_{0} represents zero or more a's
- q_{1} represents zero or more a's followed by b
- q_{2} represents any other words

Example 3

Theorem

The language $L=\left\{w \in\{0,1\}^{*} \mid d(w) \equiv 0(\bmod 3)\right\}$ is regular $(d(w)$ is the natural number represented by w in binary).

Proof)

Example 3

Theorem

The language $L=\left\{w \in\{0,1\}^{*} \mid d(w) \equiv 0(\bmod 3)\right\}$ is regular $(d(w)$ is the natural number represented by w in binary).

Proof) You need to construct a DFA D_{2} such that $L\left(D_{2}\right)=L$.

Example 3

Theorem

The language $L=\left\{w \in\{0,1\}^{*} \mid d(w) \equiv 0(\bmod 3)\right\}$ is regular $(d(w)$ is the natural number represented by w in binary).

Proof) You need to construct a DFA D_{2} such that $L\left(D_{2}\right)=L$. Consider the following DFA D_{2} :

Example 3

Theorem

The language $L=\left\{w \in\{0,1\}^{*} \mid d(w) \equiv 0(\bmod 3)\right\}$ is regular $(d(w)$ is the natural number represented by w in binary).

Proof) You need to construct a DFA D_{2} such that $L\left(D_{2}\right)=L$. Consider the following DFA D_{2} :

- q_{0} represents binary format of an integer n s.t. $n \equiv 0(\bmod 3)$
- q_{1} represents binary format of an integer n s.t. $n \equiv 1(\bmod 3)$
- q_{2} represents binary format of an integer n s.t. $n \equiv 2(\bmod 3)$

Example 4

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is regular.
You need to construct a DFA D such that $L(D)=L$.

Example 4

Theorem
The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is regular.
You need to construct a DFA D such that $L(D)=L$. However, it is impossible because L is actually not regular.

Example 4

Theorem
The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is regular.
You need to construct a DFA D such that $L(D)=L$. However, it is impossible because L is actually not regular.

Then, is it possible to prove that L is not regular?

Example 4

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is regular.
You need to construct a DFA D such that $L(D)=L$. However, it is impossible because L is actually not regular.

Then, is it possible to prove that L is not regular?

Yes, it is possible BUT you will learn how to prove it (using Pumping Lemma) later in this course.

Summary

1. Deterministic Finite Automata (DFA) Definition
Transition Diagram and Transition Table Extended Transition Function Acceptance of a Word Language of DFA (Regular Language) Examples

Next Lecture

- Nondeterministic Finite Automata (NFA)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

