Lecture 6 - Regular Expressions and Languages COSE215: Theory of Computation

Jihyeok Park

A)PLRG

2024 Spring

\rightarrow : Subset Construction

Contents

1. Regular Expressions

Recall: Operations in Languages
Definition
Precedence Order
Language of Regular Expressions Extended Regular Expressions

Examples

2. Regular Expressions in Practice

Contents

1. Regular Expressions

Recall: Operations in Languages
Definition
Precedence Order
Language of Regular Expressions
Extended Regular Expressions

Examples

2. Regular Expressions in Practice

Recall: Operations in Languages

We already learned the following operations on languages:

- Union of languages: $L_{1} \cup L_{2}$
- Concatenation of languages: $L_{1} L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1} \wedge w_{2} \in L_{2}\right\}$
- Kleene star of a language: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{n \geq 0} L^{n}$

Recall: Operations in Languages

We already learned the following operations on languages:

- Union of languages: $L_{1} \cup L_{2}$
- Concatenation of languages: $L_{1} L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1} \wedge w_{2} \in L_{2}\right\}$
- Kleene star of a language: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{n \geq 0} L^{n}$

For example, consider the following languages over symbols $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:

$$
L_{1}=\left\{\mathrm{a}^{n} \mid n \geq 1\right\} \quad L_{2}=\left\{\mathrm{b}^{n} \mid n \geq 1\right\}
$$

Recall: Operations in Languages

We already learned the following operations on languages:

- Union of languages: $L_{1} \cup L_{2}$
- Concatenation of languages: $L_{1} L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1} \wedge w_{2} \in L_{2}\right\}$
- Kleene star of a language: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{n \geq 0} L^{n}$

For example, consider the following languages over symbols $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:

$$
\begin{aligned}
L_{1}= & \left\{\mathrm{a}^{n} \mid n \geq 1\right\} \quad L_{2}=\left\{\mathrm{b}^{n} \mid n \geq 1\right\} \\
L_{1} \cup L_{2} & =\left\{\mathrm{a}^{n} \text { or } \mathrm{b}^{n} \mid n \geq 1\right\}
\end{aligned}
$$

Recall: Operations in Languages

We already learned the following operations on languages:

- Union of languages: $L_{1} \cup L_{2}$
- Concatenation of languages: $L_{1} L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1} \wedge w_{2} \in L_{2}\right\}$
- Kleene star of a language: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{n \geq 0} L^{n}$

For example, consider the following languages over symbols $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:

$$
\begin{aligned}
& L_{1}=\left\{\mathrm{a}^{n} \mid n \geq 1\right\} \quad L_{2}=\left\{\mathrm{b}^{n} \mid n \geq 1\right\} \\
& L_{1} \cup L_{2}=\left\{\mathrm{a}^{n} \text { or } \mathrm{b}^{n} \mid n \geq 1\right\} \\
& L_{1} L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n, m \geq 1\right\} \neq\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 1\right\}
\end{aligned}
$$

Recall: Operations in Languages

We already learned the following operations on languages:

- Union of languages: $L_{1} \cup L_{2}$
- Concatenation of languages: $L_{1} L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1} \wedge w_{2} \in L_{2}\right\}$
- Kleene star of a language: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{n \geq 0} L^{n}$

For example, consider the following languages over symbols $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:

$$
\begin{aligned}
& L_{1}=\left\{\mathrm{a}^{n} \mid n \geq 1\right\} \quad L_{2}=\left\{\mathrm{b}^{n} \mid n \geq 1\right\} \\
& L_{1} \cup L_{2}=\left\{\mathrm{a}^{n} \text { or } \mathrm{b}^{n} \mid n \geq 1\right\} \\
& L_{1} L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n, m \geq 1\right\} \\
& L_{1}^{*}=\left\{\mathrm{a}^{n} \mid n \geq 0\right\} \quad\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 1\right\} \\
& \neq\left\{\mathrm{a}^{n} \mid n \geq 1\right\}
\end{aligned}
$$

Recall: Operations in Languages

We already learned the following operations on languages:

- Union of languages: $L_{1} \cup L_{2}$
- Concatenation of languages: $L_{1} L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1} \wedge w_{2} \in L_{2}\right\}$
- Kleene star of a language: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{n \geq 0} L^{n}$

For example, consider the following languages over symbols $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:

$$
\begin{aligned}
& L_{1}=\left\{\mathrm{a}^{n} \mid n \geq 1\right\} \quad L_{2}=\left\{\mathrm{b}^{n} \mid n \geq 1\right\} \\
& L_{1} \cup L_{2}=\left\{\mathrm{a}^{n} \text { or } \mathrm{b}^{n} \mid n \geq 1\right\} \\
& L_{1} L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n, m \geq 1\right\} \\
& L_{1}^{*}=\left\{\mathrm{a}^{n} \mid n \geq 0\right\} \quad\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 1\right\} \\
& \neq\left\{\mathrm{a}^{n} \mid n \geq 1\right\}
\end{aligned}
$$

Regular expressions (REs) provide a new way to define languages with above operations without using finite automata!

Definition of Regular Expressions

Definition (Regular Expressions)

A regular expression over a set of symbols Σ is inductively defined as:

- (Basis Case) \varnothing, ϵ, and $x \in \Sigma$ are regular expressions.
- (Induction Case) If R_{1} and R_{2} are regular expressions, then so are $R_{1} \mid R_{2}, R_{1} R_{2}, R^{*}$, and (R).

Definition of Regular Expressions

Definition (Regular Expressions)

A regular expression over a set of symbols Σ is inductively defined as:

- (Basis Case) \varnothing, ϵ, and $x \in \Sigma$ are regular expressions.
- (Induction Case) If R_{1} and R_{2} are regular expressions, then so are $R_{1} \mid R_{2}, R_{1} R_{2}, R^{*}$, and (R).

The following is the syntax of regular expressions and examples:

$|$| $R \mid R$ | (Union) |
| :--- | :--- |
| $R R$ | (Concatenation) |
| R^{*} | (Kleene Star) |
| (R) | (Parentheses) |

\varnothing	ϵ	a	$\mathrm{a} \mid \mathrm{b}$	ab
a^{*}	$\mathrm{a}(\varnothing \mid \mathrm{c})^{*}$	$(\mathrm{a} \epsilon) \mid \mathrm{b}^{*}$	$\left(\mathrm{a}\left(\mathrm{bc} \mathrm{c}^{*}\right)^{*}\right)^{*}$	$(\mathrm{a} \varnothing \mathrm{a}) \mid \mathrm{b}^{*}$

Precedence Order

Arithmetic expressions have the following precedence order:

It means that multiplication (\times) has higher precedence than addition $(+)$. For example,

$$
1+2 \times 3 \quad \text { means } \quad 1+(2 \times 3)
$$

Precedence Order

Arithmetic expressions have the following precedence order:

It means that multiplication (\times) has higher precedence than addition $(+)$. For example,

$$
1+2 \times 3 \quad \text { means } \quad 1+(2 \times 3)
$$

Similarly, regular expressions have the following precedence order:

Precedence Order

Arithmetic expressions have the following precedence order:

It means that multiplication (\times) has higher precedence than addition $(+)$. For example,

$$
1+2 \times 3 \quad \text { means } \quad 1+(2 \times 3)
$$

Similarly, regular expressions have the following precedence order:

For example,
$\mathrm{a} \mid \epsilon \mathrm{b}^{*}$
means
al $\left(\epsilon\left(\mathrm{b}^{*}\right)\right)$
(a| \mid) b^{*}
means
(a|t) (b*)

Definition of Regular Expressions

```
// The definition of regular expressions
enum RE:
\begin{tabular}{ll} 
case Emp & \(/ / \varnothing\) \\
case Eps & \(/ / \epsilon\) \\
case Sym(symbol: Symbol) & \(/ / x\) \\
case Union(left: RE, right: RE) & \(/ / R_{1} \mid R_{2}\) \\
case Concat(left: RE, right: RE) & \(/ / R_{1} R_{2}\) \\
case Star(re: RE) & \(/ / R^{*}\)
\end{tabular}
```


Definition of Regular Expressions

```
// The definition of regular expressions
enum RE:
\begin{tabular}{ll} 
case Emp & \(/ / \varnothing\) \\
case Eps & \(/ / \epsilon\) \\
case Sym(symbol: Symbol) & \(/ / x\) \\
case Union(left: RE, right: RE) & \(/ / R_{1} \mid R_{2}\) \\
case Concat(left: RE, right: RE) & \(/ / R_{1} R_{2}\) \\
case Star(re: RE) & \(/ / R^{*}\)
\end{tabular}
```

In the algebraic data type (ADT) of regular expressions, we do not need to explicitly define the parentheses because it is already handled by the structure of the ADT.

```
// import all constructors (Emp, Eps, Sym, Union, Concat, Star) of RE
import RE.*
// a | \epsilon b*
val re1: RE = Union(Sym('a'), Concat(Eps, Star(Sym('b'))))
// (a | \epsilon) b*
val re2: RE = Concat(Union(Sym('a'), Eps), Star(Sym('b')))
```


Language of Regular Expressions

Definition (Language of Regular Expressions)

For a given regular expression R on a set of symbols Σ, the language $L(R)$ of R is inductively defined as follows:

$$
\begin{array}{lll}
L(\varnothing)=\varnothing & L\left(R_{1} \mid R_{2}\right) & =L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
L(\epsilon)=\{\epsilon\} & L\left(R_{1} R_{2}\right) & =L\left(R_{1}\right) L\left(R_{2}\right) \\
L(x)=\{x\} & L\left(R^{*}\right) & =L(R)^{*} \\
& L((R)) & =L(R)
\end{array}
$$

Language of Regular Expressions

Definition (Language of Regular Expressions)

For a given regular expression R on a set of symbols Σ, the language $L(R)$ of R is inductively defined as follows:

$$
\begin{array}{lll}
L(\varnothing)=\varnothing & L\left(R_{1} \mid R_{2}\right) & =L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
L(\epsilon) & =\{\epsilon\} & L\left(R_{1} R_{2}\right) \\
L(x)=L\left(R_{1}\right) L\left(R_{2}\right) \\
& =\{x\} & L\left(R^{*}\right) \\
& L((R)) & =L(R)^{*} \\
& & =L(R)
\end{array}
$$

$$
L\left(\mathrm{a} \mid \in \mathrm{b}^{*}\right)=L(\mathrm{a}) \cup L\left(\epsilon \mathrm{~b}^{*}\right)=\{\mathrm{a}\} \cup(\epsilon) L\left(\mathrm{~b}^{*}\right)
$$

$$
=\{\mathrm{a}\} \cup\{\epsilon\} L(\mathrm{~b})^{*}=\{\mathrm{a}\} \cup\{\epsilon\}\{\mathrm{b}\}^{*}
$$

$$
=\{a\} \cup\{b\}^{*} \quad=\left\{a \text { or } b^{n} \mid n \geq 0\right\}
$$

Language of Regular Expressions

Definition (Language of Regular Expressions)

For a given regular expression R on a set of symbols Σ, the language $L(R)$ of R is inductively defined as follows:

$$
\begin{array}{lll}
L(\varnothing)=\varnothing & L\left(R_{1} \mid R_{2}\right) & =L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
L(\epsilon) & =\{\epsilon\} & L\left(R_{1} R_{2}\right) \\
L(x)=\left\{\left(R_{1}\right) L\left(R_{2}\right)\right. \\
& =\left\{\left(R^{*}\right)\right. & =L(R)^{*} \\
& L((R)) & =L(R)
\end{array}
$$

$$
\begin{array}{rlrl}
L\left(\mathrm{a} \mid \epsilon \mathrm{b}^{*}\right) & =L(\mathrm{a}) \cup L\left(\epsilon \mathrm{~b}^{*}\right) & =\{\mathrm{a}\} \cup L(\epsilon) L\left(\mathrm{~b}^{*}\right) \\
& =\{\mathrm{a}\} \cup\{\epsilon\} L(\mathrm{~b})^{*} & =\{\mathrm{a}\} \cup\{\epsilon\}\{\mathrm{b}\}^{*} \\
& =\{\mathrm{a}\} \cup\{\mathrm{b}\}^{*} & =\left\{\mathrm{a} \text { or } \mathrm{b}^{n} \mid n \geq 0\right\} \\
& & & \\
L\left((\mathrm{a} \mid \epsilon) \mathrm{b}^{*}\right) & =L((\mathrm{a} \mid \epsilon)) L\left(\mathrm{~b}^{*}\right) & & =L(\mathrm{a} \mid \epsilon) L(\mathrm{~b})^{*} \\
& =(L(\mathrm{a}) \cup L(\epsilon)) L(\mathrm{~b})^{*} & =\left(\{\mathrm{a} \cup\{\epsilon\})\{\mathrm{b}\}^{*}\right. \\
& =\left\{\mathrm{ab}^{n} \text { or } \mathrm{b}^{n} \mid n \geq 0\right\}
\end{array}
$$

Extended Regular Expressions

More operators can be added to regular expressions:

$$
\begin{array}{lcll}
R & ::= & \cdots & \\
& \mid & R^{+} & \text {(Kleene plus) } \\
& \mid & R^{?} & \text { (Optional) }
\end{array}
$$

(Note that ${ }^{+}$and ? have same precedence as *.)

Extended Regular Expressions

More operators can be added to regular expressions:

(Note that ${ }^{+}$and ? have same precedence as *.)
Actually, they are just syntactic sugar for the existing operators:

$$
\begin{aligned}
& L\left(R^{+}\right)=L\left(R R^{*}\right)=L\left(R^{*} R\right) \\
& L\left(R^{?}\right)=L(R \mid \epsilon)=L(\epsilon \mid R)
\end{aligned}
$$

Extended Regular Expressions

More operators can be added to regular expressions:

(Note that ${ }^{+}$and ? have same precedence as *.)
Actually, they are just syntactic sugar for the existing operators:

$$
\begin{aligned}
& L\left(R^{+}\right)=L\left(R R^{*}\right)=L\left(R^{*} R\right) \\
& L\left(R^{?}\right)=L(R \mid \epsilon)=L(\epsilon \mid R)
\end{aligned}
$$

For examples,

$$
\begin{aligned}
L\left((\mathrm{ab})^{+}\right) & =L\left(\mathrm{ab}(\mathrm{ab})^{*}\right)=\left\{(\mathrm{ab})^{n} \mid n \geq 1\right\} \\
L(\mathrm{a} ? \mathrm{~b}) & =L((\mathrm{a} \mid \epsilon) \mathrm{b})=\{\mathrm{ab}, \mathrm{~b}\}
\end{aligned}
$$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|a| b \quad \text { or } \quad(a \mid b) ?
$$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|\mathrm{a}| \mathrm{b} \text { or } \quad(\mathrm{a} \mid \mathrm{b})^{?}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two $\left.0^{\prime} s\right\}$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|\mathrm{a}| \mathrm{b} \quad \text { or } \quad(\mathrm{a} \mid \mathrm{b})^{?}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two $\left.0^{\prime} s\right\}$
$1^{*} 01^{*} 01^{*}$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|\mathrm{a}| \mathrm{b} \quad \text { or } \quad(\mathrm{a} \mid \mathrm{b})^{?}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two $\left.0^{\prime} s\right\}$

$$
1^{*} 01^{*} 01^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains at least two $\left.0^{\prime} s\right\}$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|\mathrm{a}| \mathrm{b} \quad \text { or } \quad(\mathrm{a} \mid \mathrm{b})^{?}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two $\left.0^{\prime} s\right\}$

$$
1^{*} 01^{*} 01^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains at least two $\left.0^{\prime} s\right\}$

$$
(0 \mid 1)^{*} 0(0 \mid 1)^{*} 0(0 \mid 1)^{*}
$$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|\mathrm{a}| \mathrm{b} \quad \text { or } \quad(\mathrm{a} \mid \mathrm{b})^{?}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two $\left.0^{\prime} s\right\}$

$$
1^{*} 01^{*} 01^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains at least two $\left.0^{\prime} s\right\}$

$$
(0 \mid 1)^{*} 0(0 \mid 1)^{*} 0(0 \mid 1)^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has three consecutive $\left.0^{\prime} s\right\}$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|\mathrm{a}| \mathrm{b} \quad \text { or } \quad(\mathrm{a} \mid \mathrm{b})^{?}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two $\left.0^{\prime} s\right\}$

$$
1^{*} 01^{*} 01^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains at least two $\left.0^{\prime} s\right\}$

$$
(0 \mid 1)^{*} 0(0 \mid 1)^{*} 0(0 \mid 1)^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has three consecutive $\left.0^{\prime} s\right\}$

$$
(0 \mid 1)^{*} 000(0 \mid 1)^{*}
$$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|\mathrm{a}| \mathrm{b} \quad \text { or } \quad(\mathrm{a} \mid \mathrm{b})^{?}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two $\left.0^{\prime} s\right\}$

$$
1^{*} 01^{*} 01^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains at least two $\left.0^{\prime} s\right\}$

$$
(0 \mid 1)^{*} 0(0 \mid 1)^{*} 0(0 \mid 1)^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has three consecutive $\left.0^{\prime} s\right\}$

$$
(0 \mid 1)^{*} 000(0 \mid 1)^{*}
$$

- $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{a}\right.$ and b alternate in $\left.w\right\}$

Examples

- $L=\{\epsilon, \mathrm{a}, \mathrm{b}\}$

$$
\epsilon|\mathrm{a}| \mathrm{b} \quad \text { or } \quad(\mathrm{a} \mid \mathrm{b})^{?}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two $\left.0^{\prime} s\right\}$

$$
1^{*} 01^{*} 01^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains at least two $\left.0^{\prime} s\right\}$

$$
(0 \mid 1)^{*} 0(0 \mid 1)^{*} 0(0 \mid 1)^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has three consecutive $\left.0^{\prime} s\right\}$

$$
(0 \mid 1)^{*} 000(0 \mid 1)^{*}
$$

- $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{a}\right.$ and b alternate in $\left.w\right\}$

$$
a^{?}(b a)^{*} b ?
$$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$
$\mathrm{aaa}^{+}(\mathrm{bb})^{*}$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$ $\mathrm{aaa}^{+}(\mathrm{bb})^{*}$
- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+m \equiv 0(\bmod 2)\right\}$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$

$$
\mathrm{aaa}^{+}(\mathrm{bb})^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+m \equiv 0(\bmod 2)\right\}$

$$
(\mathrm{aa})^{*}(\mathrm{ab})^{?}(\mathrm{bb})^{*}
$$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$

$$
\mathrm{aaa}^{+}(\mathrm{bb})^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+m \equiv 0(\bmod 2)\right\}$

$$
(\mathrm{aa})^{*}(\mathrm{ab})^{?}(\mathrm{bb})^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of 0 's is divisible by 3$\}$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$

$$
\mathrm{aaa}^{+}(\mathrm{bb})^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+m \equiv 0(\bmod 2)\right\}$

$$
(\mathrm{aa})^{*}(\mathrm{ab})^{?}(\mathrm{bb})^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of 0 's is divisible by 3$\}$

$$
1^{*}\left(01^{*} 01^{*} 01^{*}\right)^{*}
$$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$

$$
\mathrm{aaa}^{+}(\mathrm{bb})^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+m \equiv 0(\bmod 2)\right\}$

$$
(\mathrm{aa})^{*}(\mathrm{ab})^{?}(\mathrm{bb})^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of 0 's is divisible by 3$\}$

$$
1^{*}\left(01^{*} 01^{*} 01^{*}\right)^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid \mathbb{N}(w) \equiv 0(\bmod 3)\right\}$ where $\mathbb{N}(w)$ is the natural number represented by w in binary

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$

$$
\mathrm{aaa}^{+}(\mathrm{bb})^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+m \equiv 0(\bmod 2)\right\}$

$$
(\mathrm{aa})^{*}(\mathrm{ab})^{?}(\mathrm{bb})^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of 0 's is divisible by 3$\}$

$$
1^{*}\left(01^{*} 01^{*} 01^{*}\right)^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid \mathbb{N}(w) \equiv 0(\bmod 3)\right\}$ where $\mathbb{N}(w)$ is the natural number represented by w in binary

$$
\left(0 \mid 1\left(01^{*} 0\right)^{*} 1\right)^{*}
$$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$

$$
\mathrm{aaa}^{+}(\mathrm{bb})^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+m \equiv 0(\bmod 2)\right\}$

$$
(\mathrm{aa})^{*}(\mathrm{ab})^{?}(\mathrm{bb})^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of 0 's is divisible by 3$\}$

$$
1^{*}\left(01^{*} 01^{*} 01^{*}\right)^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid \mathbb{N}(w) \equiv 0(\bmod 3)\right\}$ where $\mathbb{N}(w)$ is the natural number represented by w in binary

$$
\left(0 \mid 1\left(01^{*} 0\right)^{*} 1\right)^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}$

Examples

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n \geq 3 \wedge m \equiv 0(\bmod 2)\right\}$

$$
\mathrm{aaa}^{+}(\mathrm{bb})^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n+m \equiv 0(\bmod 2)\right\}$

$$
(\mathrm{aa})^{*}(\mathrm{ab})^{?}(\mathrm{bb})^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of 0 's is divisible by 3$\}$

$$
1^{*}\left(01^{*} 01^{*} 01^{*}\right)^{*}
$$

- $L=\left\{w \in\{0,1\}^{*} \mid \mathbb{N}(w) \equiv 0(\bmod 3)\right\}$ where $\mathbb{N}(w)$ is the natural number represented by w in binary

$$
\left(0 \mid 1\left(01^{*} 0\right)^{*} 1\right)^{*}
$$

- $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}-$ IMPOSSIBLE ($\left.\nexists \mathrm{RE} R \cdot L(R)=L\right)$

Equivalence of Regular Expressions

We say two regular expressions R_{1} and R_{2} are equivalent $\left(R_{1} \equiv R_{2}\right)$ if their languages are the same: $L\left(R_{1}\right)=L\left(R_{2}\right)$.

Equivalence of Regular Expressions

We say two regular expressions R_{1} and R_{2} are equivalent ($R_{1} \equiv R_{2}$) if their languages are the same: $L\left(R_{1}\right)=L\left(R_{2}\right)$.

Regular expressions have following equivalence relations:

- Associativity for union and concatenation:

$$
R_{1}\left|\left(R_{2} \mid R_{3}\right) \equiv\left(R_{1} \mid R_{2}\right)\right| R_{3} \quad \text { and } \quad R_{1}\left(R_{2} R_{3}\right) \equiv\left(R_{1} R_{2}\right) R_{3}
$$

Equivalence of Regular Expressions

We say two regular expressions R_{1} and R_{2} are equivalent ($R_{1} \equiv R_{2}$) if their languages are the same: $L\left(R_{1}\right)=L\left(R_{2}\right)$.

Regular expressions have following equivalence relations:

- Associativity for union and concatenation:

$$
R_{1}\left|\left(R_{2} \mid R_{3}\right) \equiv\left(R_{1} \mid R_{2}\right)\right| R_{3} \quad \text { and } \quad R_{1}\left(R_{2} R_{3}\right) \equiv\left(R_{1} R_{2}\right) R_{3}
$$

- Commutativity for union:

$$
R_{1}\left|R_{2} \equiv R_{2}\right| R_{1}
$$

Equivalence of Regular Expressions

We say two regular expressions R_{1} and R_{2} are equivalent ($R_{1} \equiv R_{2}$) if their languages are the same: $L\left(R_{1}\right)=L\left(R_{2}\right)$.

Regular expressions have following equivalence relations:

- Associativity for union and concatenation:

$$
R_{1}\left|\left(R_{2} \mid R_{3}\right) \equiv\left(R_{1} \mid R_{2}\right)\right| R_{3} \quad \text { and } \quad R_{1}\left(R_{2} R_{3}\right) \equiv\left(R_{1} R_{2}\right) R_{3}
$$

- Commutativity for union:

$$
R_{1}\left|R_{2} \equiv R_{2}\right| R_{1}
$$

- Left and right distributive laws:

$$
\left(R_{1} \mid R_{2}\right) R_{3} \equiv R_{1} R_{3} \mid R_{2} R_{3} \quad \text { and } \quad R_{1}\left(R_{2} \mid R_{3}\right) \equiv R_{1} R_{2} \mid R_{1} R_{3}
$$

Equivalence of Regular Expressions

- \varnothing and ϵ are identity for union and concatenation:

$$
R|\varnothing \equiv \varnothing| R \equiv R \quad \text { and } \quad R \epsilon \equiv \epsilon R \equiv R
$$

Equivalence of Regular Expressions

- \varnothing and ϵ are identity for union and concatenation:

$$
R|\varnothing \equiv \varnothing| R \equiv R \quad \text { and } \quad R \epsilon \equiv \epsilon R \equiv R
$$

- \varnothing is annihilator for concatenation:

$$
R \varnothing \equiv \varnothing R \equiv \varnothing
$$

Equivalence of Regular Expressions

- \varnothing and ϵ are identity for union and concatenation:

$$
R|\varnothing \equiv \varnothing| R \equiv R \quad \text { and } \quad R \epsilon \equiv \epsilon R \equiv R
$$

- \varnothing is annihilator for concatenation:

$$
R \varnothing \equiv \varnothing R \equiv \varnothing
$$

- Idempotent Law for union:

$$
R \mid R \equiv R
$$

Equivalence of Regular Expressions

- \varnothing and ϵ are identity for union and concatenation:

$$
R|\varnothing \equiv \varnothing| R \equiv R \quad \text { and } \quad R \epsilon \equiv \epsilon R \equiv R
$$

- \varnothing is annihilator for concatenation:

$$
R \varnothing \equiv \varnothing R \equiv \varnothing
$$

- Idempotent Law for union:

$$
R \mid R \equiv R
$$

- Laws involving Kleene star:

$$
\begin{gathered}
\left(R^{*}\right)^{*} \equiv R^{*} \quad \text { and } \quad \varnothing^{*} \equiv \epsilon \quad \text { and } \quad \epsilon^{*} \equiv \epsilon \\
\epsilon\left|R^{*} \equiv R^{*}\right| \epsilon \equiv R^{*} \quad \text { and } \quad R\left|R^{*} \equiv R^{*}\right| R \equiv R^{*}
\end{gathered}
$$

Simplifying Regular Expressions

We can simplify regular expressions using the equivalence laws.

Simplifying Regular Expressions

We can simplify regular expressions using the equivalence laws.
For example,

$$
\left((a \varnothing)^{*}\left(b|\varnothing| b^{*}\right)\right)^{*}
$$

Simplifying Regular Expressions

We can simplify regular expressions using the equivalence laws.
For example,

$$
\left((\mathrm{a} \varnothing)^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} \equiv\left(\varnothing^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} \quad(\because R \varnothing \equiv \varnothing \text { - Annihilator })
$$

Simplifying Regular Expressions

We can simplify regular expressions using the equivalence laws.
For example,

$$
\begin{aligned}
\left((\mathrm{a} \varnothing)^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & \equiv\left(\varnothing^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} \\
& (\because R \varnothing \equiv \varnothing-\text { Annihilator }) \\
& \equiv\left(\epsilon\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*}
\end{aligned} \quad\left(\because \varnothing^{*} \equiv \epsilon\right)
$$

Simplifying Regular Expressions

We can simplify regular expressions using the equivalence laws.
For example,

$$
\begin{aligned}
\left((\mathrm{a} \varnothing)^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & \equiv\left(\varnothing^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & & (\because R \varnothing \equiv \varnothing-\text { Annihilator }) \\
& \equiv\left(\epsilon\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & & \left(\because \varnothing^{*} \equiv \epsilon\right) \\
& \equiv\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)^{*} & & (\because \epsilon R \equiv R \text { - Identity })
\end{aligned}
$$

Simplifying Regular Expressions

We can simplify regular expressions using the equivalence laws.
For example,

$$
\begin{aligned}
\left((\mathrm{a} \varnothing)^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & \equiv\left(\varnothing^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & & (\because R \varnothing \equiv \varnothing-\text { Annihilator }) \\
& \equiv\left(\epsilon\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & & \left(\because \varnothing^{*} \equiv \epsilon\right) \\
& \equiv\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)^{*} & & (\because \epsilon R \equiv R \text { - Identity }) \\
& \equiv\left(\mathrm{b} \mid \mathrm{b}^{*}\right)^{*} & & (\because R \mid \varnothing \equiv R \text { - Identity })
\end{aligned}
$$

Simplifying Regular Expressions

We can simplify regular expressions using the equivalence laws.
For example,

$$
\begin{aligned}
\left((\mathrm{a} \varnothing)^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & \equiv\left(\varnothing^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & & (\because R \varnothing \equiv \varnothing-\text { Annihilator }) \\
& \equiv\left(\epsilon\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & & \left(\because \varnothing^{*} \equiv \epsilon\right) \\
& \equiv\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)^{*} & & (\because \epsilon R \equiv R-\text { Identity }) \\
& \equiv\left(\mathrm{b} \mid \mathrm{b}^{*}\right)^{*} & & (\because R \mid \varnothing \equiv R \text { - Identity }) \\
& \equiv\left(\mathrm{b}^{*}\right)^{*} & & \left(\because R \mid R^{*} \equiv R^{*}\right)
\end{aligned}
$$

Simplifying Regular Expressions

We can simplify regular expressions using the equivalence laws.
For example,

$$
\begin{array}{rlrl}
\left((\mathrm{a} \varnothing)^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & \equiv\left(\varnothing^{*}\left(\mathrm{~b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & (\because R \varnothing \equiv \varnothing \text { - Annihilator }) \\
& \equiv\left(\epsilon\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)\right)^{*} & & \left(\because \varnothing^{*} \equiv \epsilon\right) \\
& \equiv\left(\mathrm{b}|\varnothing| \mathrm{b}^{*}\right)^{*} & & (\because \epsilon R \equiv R \text { - Identity }) \\
& \equiv\left(\mathrm{b} \mid \mathrm{b}^{*}\right)^{*} & & (\because R \mid \varnothing \equiv R \text { - Identity }) \\
& \equiv\left(\mathrm{b}^{*}\right)^{*} & & \left(\because R \mid R^{*} \equiv R^{*}\right) \\
& \equiv \mathrm{b}^{*} & & \left(\because\left(R^{*}\right)^{*} \equiv R^{*}\right)
\end{array}
$$

Contents

1. Regular Expressions
 Recall: Operations in Languages
 Definition
 Precedence Order
 Language of Regular Expressions Extended Regular Expressions Examples

2. Regular Expressions in Practice

Regular Expressions in Practice

Most programming languages support regular expressions:

- Scala - scala.util.matching.Regex class
- Python - re module
- JavaScript - RegExp object
- Rust - regex crate

Regular Expressions in Practice

Most programming languages support regular expressions:

- Scala - scala.util.matching.Regex class
- Python - re module
- JavaScript - RegExp object
- Rust - regex crate
- ...

For example, we can convert a string to a regular expression (Regex) object by using the r method in Scala:

```
import scala.util.matching.Regex
val re: Regex = "(a|b)c*".r
re.matches("a") // true
re.matches("b") // true
re.matches("accc") // true
re.matches("bccccc") // true
re.matches("ba") // false
re.matches("cba") // false
re.matches("aacc") // false
re.matches("cccccc") // false
```


Regular Expressions in Practice

In practice, regular expressions support more syntactic sugar:

Syntax	Description
\sim	start of the line
$\$$	end of the line
\cdot	any character
[]	any character in the set
$[\sim]$	any character not in the set
$\backslash \mathrm{C}$	any digit
\w	any alphanumeric character

Regular Expressions in Practice

In practice, regular expressions support more syntactic sugar:

Syntax	Description
-	start of the line
\$	end of the line
.	any character
[]	any character in the set
[^]	any character not in the set
\d	any digit
\w	any alphanumeric character

"ci[dait]*".r "
w+\$".r "
d+".r

For example, above Scala regular expressions find patterns in each string:

```
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut 53 et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation 42 laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate }129\mathrm{ esse cillum dolore eu
fugiat nulla 5323. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.
```


Summary

1. Regular Expressions

Recall: Operations in Languages
Definition
Precedence Order
Language of Regular Expressions Extended Regular Expressions

Examples

2. Regular Expressions in Practice

Next Lecture

- Equivalence of Regular Expressions and Finite Automata

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

