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Roadmap: Towards Turing Machine ’MPLRG

A Turing machine is a specific kind of automaton.

Finite Pushdown Turin
Automata = -- 9 Automata - 9 Machinges
(FA) (PDA)

® Part 1: Finite Automata (FA)
® Regular Expressions (REs)
® Regular Languages (RLs)
® Applications: text search, etc.
¢ Part 2: Pushdown Automata (PDA)
® Context-Free Grammars (CFGs)
® Context-Free Languages (CFLs)
® Applications: programming languages, natural language processing, etc.
e Part 3: Turing Machines (TMs)
® Lambda Calculus (LC)
® Recursively Enumerable Languages (RELs)
® Undecidability and Intractability
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Recall ’VNPLRG

Push

@] 1D

Push

The current state is OFF if and only if the button is pushed even times.

® |s it possible to prove it?

Let's learn mathematical background and notation.
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Contents ’VNPLRG

1. Mathematical Notations
Notations in Logics
Notations in Set Theory

2. Inductive Proofs
Inductions on Integers
Structural Inductions
Mutual Inductions

3. Notations in Languages
Symbols & Words
Languages
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Contents ’VNPLRG

1. Mathematical Notations
Notations in Logics
Notations in Set Theory
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Notations in Logics 7NPLRG

Notation | Description

A B arbitrary statements.

P(x) a predicate is a statement having variables (e.g., x).
ANB the conjunction of A and B. (i.e.,, “A and B").

AV B the disjunction of A and B. (i.e.,, “Aor B").

-A the negation of A. (i.e., “not A").
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Notations in Logics 7NPLRG

Notation | Description

A B arbitrary statements.

P(x) a predicate is a statement having variables (e.g., x).
ANB the conjunction of A and B. (i.e.,, “A and B").

AV B the disjunction of A and B. (i.e.,, “Aor B").

-A the negation of A. (i.e., “not A").

-(AANB)=-AV-B

(De Morgan’'s Laws) :{ ~(AVB) = —-AA-B
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Notations in Logics 7NPLRG

Notation | Description

A B arbitrary statements.

P(x) a predicate is a statement having variables (e.g., x).
ANB the conjunction of A and B. (i.e.,, “A and B").

AV B the disjunction of A and B. (i.e.,, “Aor B").

-A the negation of A. (i.e., “not A").

(De Morgan’s Laws) = ~(AV B) = -~AA B

R

AAB\MMVﬂB

{ ~(AAB)=-AV-B
(Truth Table) =

REL DS
S~

T
T
T
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Notations in Logics 7NPLRG

Notation Description

A= B the implication of A and B
(i.e., "if A then B" or "A implies B")
(i.e., "AV B).

A& B A if and only if (iff) B

(ie., A= BAB=A).

Vx € X. P(x) | the universal quantifier

(i.e., “for all x in X, P(x) holds").

Ix € X. P(x) | the existential quantifier

(i.e., “there exists x in X such that P(x) holds").
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Notations in Set Theory ’VPLRG

e A set is a collection of elements.
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
® (Natural Numbers) = N={0,1,2,---}
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
® (Natural Numbers) = N={0,1,2,---}
® (Squares of N) = {x? | x € N} = {0,1,4,9,16,25,36,--- }

COSE215 @ Korea University
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
(Natural Numbers) = N={0,1,2,---}
(Squares of N) = {x? | x € N} = {0,1,4,9,16,25,36,--- }
(Even Numbers) = {x e N| x =0 (mod 2)} = {0,2,4,6,8,---}

where a=b (modn) < Jke€Z. a=b+kn

(i.e., a is congruent to b modulo n)
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
(Natural Numbers) = N={0,1,2,---}
(Squares of N) = {x? | x € N} = {0,1,4,9,16,25,36,--- }
(Even Numbers) = {x e N| x =0 (mod 2)} = {0,2,4,6,8,---}

where a=b (modn) < Jke€Z. a=b+kn

(i.e., a is congruent to b modulo n)
® The empty set is denoted by @.
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
(Natural Numbers) = N={0,1,2,---}
(Squares of N) = {x? | x € N} = {0,1,4,9,16,25,36,--- }
(Even Numbers) = {x e N| x =0 (mod 2)} = {0,2,4,6,8,---}

where a=b (modn) < Jke€Z. a=b+kn

(i.e., a is congruent to b modulo n)
® The empty set is denoted by @.
¢ The cardinality of a set X is denoted by |X|.
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
® (Natural Numbers) = N={0,1,2,---}
® (Squares of N) = {x? | x € N} = {0,1,4,9,16,25,36,--- }
® (Even Numbers) = {x e N| x =0 (mod 2)} = {0,2,4,6,8,---}
where a=b (modn) < Jke€Z. a=b+kn

(i.e., a is congruent to b modulo n)
® The empty set is denoted by @.
¢ The cardinality of a set X is denoted by |X|.
® x is an element of a set X is denoted by x € X.
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
® (Natural Numbers) = N={0,1,2,---}
® (Squares of N) = {x? | x € N} = {0,1,4,9,16,25,36,--- }
® (Even Numbers) = {x e N| x =0 (mod 2)} = {0,2,4,6,8,---}
where a=b (modn) < Jke€Z. a=b+kn

(i.e., a is congruent to b modulo n)
The empty set is denoted by &.
The cardinality of a set X is denoted by | X].
x is an element of a set X is denoted by x € X.
e X is a subset of Y is denoted by X C Y.

XCY <= VxeX.xeY
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Notations in Set Theory ’VPLRG

® A set is a collection of elements. For example,
® (Integers) =Z={--,-2,-1,0,1,2,---}
® (Natural Numbers) = N={0,1,2,---}
® (Squares of N) = {x? | x € N} = {0,1,4,9,16,25,36,--- }
® (Even Numbers) = {x e N| x =0 (mod 2)} = {0,2,4,6,8,---}
where a=b (modn) < Jke€Z. a=b+kn

(i.e., a is congruent to b modulo n)
The empty set is denoted by &.
The cardinality of a set X is denoted by | X].
x is an element of a set X is denoted by x € X.
e X is a subset of Y is denoted by X C Y.

XCY <= VxeX.xeY

e X is a proper subset of Y is denoted by X C Y.
XCY <= XCYAX#Y
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Notations in Set Theory ’VPLRG

® The union of sets

XUY ={x|xeXVvxeY}
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Notations in Set Theory ’VPLRG

® The union of sets

XUY ={x|xeXVvxeY}
Uc :X1UX2U'--UX,,:{XIHXGC.XGX}

where C = {Xq, X2, -+, Xn}.
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Notations in Set Theory ’VPLRG

® The union of sets

XUY ={x|xeXVvxeY}
Uc :X1UX2U'--UX,,:{XIHXGC.XGX}

where C = {Xq, X2, -+, Xn}.

® The intersection of sets

XNY={x|xeXAxeY}
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Notations in Set Theory ’VPLRG

® The union of sets

XUY ={x|xeXVvxeY}
Uc :X1UX2U'--UX,,:{XIHXGC.XGX}

where C = {Xq, X2, -+, Xn}.

® The intersection of sets

XNY={x|xeXAxeY}
NC :XlﬂXQQ'--ﬁXn:{X’VXGC.XGX}

where C = {X1, X2, -+, Xn}.
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Notations in Set Theory ’VPLRG

® The union of sets

XUY ={x|xeXVvxeY}
Uc :XlUXQU'--UXn:{XIHXGC.XGX}

where C = {Xq, X2, -+, Xn}.

® The intersection of sets

XNY={x|xeXAxeY}
NC :XlﬂXQQ'--ﬁXn:{X’VXGC.XGX}

where C = {X1, X2, -+, Xn}.
e The difference of sets

X\Y={x|xeXAx&Y}
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Notations in Set Theory
® The complement of a set X is denoted by X.
X={x|xeUAx¢gX}

where U is the universal set.
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Notations in Set Theory ’VPLRG
® The complement of a set X is denoted by X.
X={x|xeUAx¢gX}

where U is the universal set.

* The power set of a set X is denoted by 2% or P(X).

X =PX)={Y|YCX}
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Notations in Set Theory ’VPLRG
® The complement of a set X is denoted by X.
X={x|xeUAx¢gX}

where U is the universal set.

* The power set of a set X is denoted by 2% or P(X).

X =PX)={Y|YCX}

® The Cartesian product of sets X and Y is denoted by X x Y.

XxY={(x,y) | xeXANyeY}
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Contents

2. Inductive Proofs
Inductions on Integers
Structural Inductions
Mutual Inductions

’VNPLRG
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Inductions on Integers 7NPLRG

Definition (Inductions on Integers)

Let P(n) be a predicate on integers, and if

¢ (Basis Case) P(k) holds where k is an integer, and

¢ (Induction Case) for all integer n > k, P(n) = P(n+ 1),
then P(i) holds for all i > k.

P(n) is called induction hypothesis (I.H.).
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Inductions on Integers 7NPLRG

Definition (Inductions on Integers)

Let P(n) be a predicate on integers, and if

¢ (Basis Case) P(k) holds where k is an integer, and

¢ (Induction Case) for all integer n > k, P(n) = P(n+ 1),
then P(i) holds for all i > k.

P(n) is called induction hypothesis (I.H.).

Induction Induction Induction Induction
P(k)  P(k+1) - P(n)  Pn+1)

Basis
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Inductions on Integers — Example 1 'V PLRG

Prove that Yn > 0. Y /i = n(n2+1)'

Proof)
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Inductions on Integers — Example 1 'V PLRG

Prove that Yn > 0. Y /i = n(n2+1)'

Proof)
¢ (Basis Case): 0=0(0+1)/2 O
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Inductions on Integers — Example 1 'V PLRG

Prove that Yn > 0. Y /i = n(n2+1)'

Proof)
¢ (Basis Case): 0=0(0+1)/2 O
¢ (Induction Case): Assume that it holds for n (I.H.)

Then, let's prove it for n + 1:
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Inductions on Integers — Example 1 'V PLRG

Prove that Yn > 0. Y /i = n(n2+1)'

Proof)
¢ (Basis Case): 0=0(0+1)/2 O
¢ (Induction Case): Assume that it holds for n (I.H.)

Then, let's prove it for n + 1:

n+1 n
di=+1+> i
i=0 i=0

)+ MDDy

2

_(n+D(+2)
2
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Inductions on Integers — Example 2 'V PLRG

2 +1)(2n+1
Prove that Vn > 0. > /g i %.

Proof)
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Inductions on Integers — Example 2 'V PLRG

) +1)(2n+1
Prove that ¥n > 0. Y/ i —%.

Proof)
® (Basis Case): 02=0(0+1)(2%x0+1)/6 [J
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Inductions on Integers — Example 2 'V PLRG

) +1)(2n+1
Prove that ¥n > 0. Y/ i —%.

Proof)
® (Basis Case): 02=0(0+1)(2%x0+1)/6 [J
® (Induction Case): Assume that it holds for n (1.H.).

Then, let's prove it for n + 1:

:(n+1)2+w

_ (0 )(n+2)R(n+1) +1)
6

O
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Structural Inductions — Inductive Definitions 7VPLRG

In CS, we often define somethings as inductively-defined sets.
For example, we can define trees as follows:

Example (Inductive Definition of Trees)

A tree is defined as follows:

* (Basis Case) A single node N is a tree.

¢ (Induction Case) If Ty,---, T, are trees, then a graph defined with
a new root node N and edges from N to T1,---, T, is a tree.
O
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Structural Inductions — Inductive Definitions "V PLRG
Another example is a set of arithmetic expressions:

Example (Inductive Definition of Arithmetic Expressions)

An arithmetic expression is defined as follows:

¢ (Basis Case) A number or a variable is an arithmetic expression.

¢ (Induction Case) If E and F are arithmetic expressions, then so are
E+F, ExF, and (E).

42 X X +y
42 * x (x) (x xy) *x z
(2 +x) xy x x (x x y) (CCx))))

COSE215 @ Korea University
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Structural Inductions ’NPLRG

Definition (Structural Inductions)

Let P(x) be a predicate on a inductively-defined set X, and if
¢ (Basis Case) P(b1),- -, P(bk) hold for all basis cases by, - - , by.
¢ (Induction Case) for all x € X,

P(x1) A -+ A P(x) = P(x)

where xi, - -+, x, are the sub-structures of x.
then P(x) holds for all x € X.

P(x1),- -+, P(xn) are called induction hypotheses.
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Structural Inductions ’NPLRG

Definition (Structural Inductions)

Let P(x) be a predicate on a inductively-defined set X, and if

¢ (Basis Case) P(b1),- -, P(bk) hold for all basis cases by, - - , by.
¢ (Induction Case) for all x € X,

P(x1) A -+ A P(x) = P(x)

where xi, - -+, x, are the sub-structures of x.
then P(x) holds for all x € X.

P(x1),- -+, P(xn) are called induction hypotheses.
Induction Induction Induction
Plb) = - = Pl —
Basis { / / P(x)
P(by) > .- > P(xz,)

COSE215 @ Korea University
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Structural Inductions — Example 1 ’VPLRG

Prove that for all tree T, the number of nodes in T is equal to the
number of edges in T plus one.

Proof)
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Structural Inductions — Example 1 ’VPLRG

Prove that for all tree T, the number of nodes in T is equal to the
number of edges in T plus one.

Proof) Let N(T) be the number of node and E(T) be the number of
edges in T. Let's prove VT. N(T) = E(T) + 1.
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Structural Inductions — Example 1 ’VPLRG

Prove that for all tree T, the number of nodes in T is equal to the
number of edges in T plus one.

Proof) Let N(T) be the number of node and E(T) be the number of
edges in T. Let's prove VT. N(T) = E(T) + 1.
® (Basis Case): N(T)=1and E(T)=0. O
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Structural Inductions — Example 1 ’VPLRG

Prove that for all tree T, the number of nodes in T is equal to the
number of edges in T plus one.

Proof) Let N(T) be the number of node and E(T) be the number of
edges in T. Let's prove VT. N(T) = E(T) + 1.

® (Basis Case): N(T)=1and E(T)=0. O

¢ (Induction Case): Assume that it holds for T1,---, T, (I.H.). Then,

N(T) =1+ Z N(T)
i=1

=14 ) (E(T)+1) (< 1H)
i=1

n
:1+n+ZE(T,-)
i=1

=1+4+E(T) O
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Structural Inductions — Example 2 ’VPLRG

Prove that for all arithmetic expression E, the number of left parentheses
in E is equal to the number of right parentheses in E.

Proof)
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Structural Inductions — Example 2 ’VPLRG

Prove that for all arithmetic expression E, the number of left parentheses
in E is equal to the number of right parentheses in E.

Proof) Let L(E) be the number of left parentheses and R(E) be the
number of right parentheses in E. Let's prove VE. L(E) = R(E).
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Structural Inductions — Example 2 ’VPLRG

Prove that for all arithmetic expression E, the number of left parentheses
in E is equal to the number of right parentheses in E.

Proof) Let L(E) be the number of left parentheses and R(E) be the
number of right parentheses in E. Let's prove VE. L(E) = R(E).

¢ (Basis Case): L(E) = R(E) = 0 for numbers and variables. [
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Structural Inductions — Example 2 ’VPLRG

Prove that for all arithmetic expression E, the number of left parentheses
in E is equal to the number of right parentheses in E.

Proof) Let L(E) be the number of left parentheses and R(E) be the
number of right parentheses in E. Let's prove VE. L(E) = R(E).

¢ (Basis Case): L(E) = R(E) = 0 for numbers and variables. [
¢ (Induction Case): Assume that it holds for £ and F (l.H.). Then,

L(E+F) = L(E)+ L(F)=R(E)+ R(F) (. I.H.)
= R(E+F) O
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Structural Inductions — Example 2 ’VPLRG

Prove that for all arithmetic expression E, the number of left parentheses
in E is equal to the number of right parentheses in E.

Proof) Let L(E) be the number of left parentheses and R(E) be the
number of right parentheses in E. Let's prove VE. L(E) = R(E).

¢ (Basis Case): L(E) = R(E) = 0 for numbers and variables. [
¢ (Induction Case): Assume that it holds for £ and F (l.H.). Then,

L(E+F) = L(E) + L(F) = R(E) + R(F) (- I.H.)
= R(E+F) O

L(ExF) = L(E)+ L(F) = R(E) + R(F) (. 1LH)
= R(ExF) [
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Structural Inductions — Example 2 ’VPLRG

Prove that for all arithmetic expression E, the number of left parentheses
in E is equal to the number of right parentheses in E.

Proof) Let L(E) be the number of left parentheses and R(E) be the
number of right parentheses in E. Let's prove VE. L(E) = R(E).

¢ (Basis Case): L(E) = R(E) = 0 for numbers and variables. [
¢ (Induction Case): Assume that it holds for £ and F (l.H.). Then,

L(E+F) = L(E)+ L(F)=R(E)+ R(F) (. I.H.)

= R(E+F) O
L(ExF) = L(E)+ L(F) = R(E) + R(F) (. I.H.)
= R(ExF) O
L((E))=L(E)+1=R(E)+1  (.LH)
=R((E)) O
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Mutual Inductions

Sometimes, we need to prove multiple predicates simultaneously.
Definition (Mutual Inductions)
Let P(x) and Q(x) are predicates on integers, and if

e (Basis Case) P(k) and Q(k) hold where k is an integer, and
¢ (Induction Case) for all n > k,

P(n)AQ(n)= P(n+1)AQ(n+1)
then P(i) and Q(/) hold for all i > k.

’VNPLRG

P(n) and Q(n) are called induction hypotheses.
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Mutual Inductions ’VNPLRG

Sometimes, we need to prove multiple predicates simultaneously.

Definition (Mutual Inductions)

Let P(x) and Q(x) are predicates on integers, and if

¢ (Basis Case) P(k) and Q(k) hold where k is an integer, and
¢ (Induction Case) for all n > k,

P(n)AQ(n) = P(n+1)AQ(n+1)
then P(i) and Q(/) hold for all i > k.

P(n) and Q(n) are called induction hypotheses.
Induction Induction Induction Induction
{P(k:)—>P(k +1)—>---—> P(n) —> P(n+1)
Basi
Lo+ 1) - T3 Q) =3 Qn+ 1)
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Mutual Inductions — Example ’VPLRG

Push

@] 1D

Push

The current state is OFF if and only if the button is pushed even times.

It is difficult to prove it with only one predicate.
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Mutual Inductions — Example ’VPLRG

Push

@] 1D

Push

The current state is OFF if and only if the button is pushed even times.

It is difficult to prove it with only one predicate.

Let's prove it with two predicates:

The current state is OFF if and only if the button is pushed even times,
and the current state is ON if and only if the button is pushed odd times.
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Mutual Inductions — Example ’VPLRG

The current state is OFF if and only if the button is pushed even times,
and the current state is ON if and only if the button is pushed odd times.

Proof)
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Mutual Inductions — Example ’VPLRG

The current state is OFF if and only if the button is pushed even times,
and the current state is ON if and only if the button is pushed odd times.

Proof) Let S(/) be the current state after i times of pushing. Let's prove

Vi > 0. S(i) = OFF += i =0 (mod 2) (P)
Vi>0.5(i) =ON <= i=1(mod 2) (Q)
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Mutual Inductions — Example ’VPLRG

The current state is OFF if and only if the button is pushed even times,
and the current state is ON if and only if the button is pushed odd times.

Proof) Let S(/) be the current state after i times of pushing. Let's prove

Vi > 0. S(i) = OFF += i =0 (mod 2) (P)
Vi>0.5(i) =ON <= i=1(mod 2) (Q)

¢ (Basis Case): Known facts: S(0) = OFF and 0 = 0 (mod 2)
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Mutual Inductions — Example ’VPLRG

The current state is OFF if and only if the button is pushed even times,
and the current state is ON if and only if the button is pushed odd times.

Proof) Let S(/) be the current state after i times of pushing. Let's prove

Vi > 0. S(i) = OFF += i =0 (mod 2) (P)
Vi>0.5(i) =ON <= i=1(mod 2) (Q)

¢ (Basis Case): Known facts: S(0) = OFF and 0 = 0 (mod 2)
® (P,=): 5(0)=O0OFF = 0=0(mod2) because 0=0(mod2)
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Mutual Inductions — Example ’VPLRG

The current state is OFF if and only if the button is pushed even times,
and the current state is ON if and only if the button is pushed odd times.

Proof) Let S(/) be the current state after i times of pushing. Let's prove
Vi >0.5(i) = OFF <= i =0 (mod 2) (P)
Vi>0.5(i)=ON <= i=1(mod 2) (Q)
¢ (Basis Case): Known facts: S(0) = OFF and 0 = 0 (mod 2)

® (P,=): S(0)=0FF = 0=0(mod2) because 0=0(mod2)
® (P,<): 5(0)=O0OFF <« 0=0(mod 2) because S(0)= OFF
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Mutual Inductions — Example ’VPLRG

The current state is OFF if and only if the button is pushed even times,
and the current state is ON if and only if the button is pushed odd times.

Proof) Let S(/) be the current state after i times of pushing. Let's prove
Vi >0.5(i) = OFF <= i =0 (mod 2) (P)
Vi>0.5(i)=ON <= i=1(mod 2) (Q)
¢ (Basis Case): Known facts: S(0) = OFF and 0 = 0 (mod 2)

® (P,=): 5(0)=O0OFF = 0=0(mod2) because 0=0(mod2)
® (P,«<): S5(0)=O0OFF <« 0=0(mod 2) because S5(0)= OFF
): S5(0)=ON = 0=1(mod2) because 5(0)# ON
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Mutual Inductions — Example ’VPLRG

The current state is OFF if and only if the button is pushed even times,
and the current state is ON if and only if the button is pushed odd times.

Proof) Let S(/) be the current state after i times of pushing. Let's prove

Vi > 0. S(i) = OFF += i =0 (mod 2) (P)
Vi>0.5(i) =ON <= i=1(mod 2) (Q)

¢ (Basis Case): Known facts: S(0) = OFF and 0 = 0 (mod 2)

® (P,=): 5(0)=O0OFF = 0=0(mod2) because 0=0(mod2)
* (P, <) S(0)=OFF < 0=0(mod2) because S(0)= OFF

°* (Q =) S(0)=ON = 0=1(mod2) because S(0)# ON

®* (Q <) S(0)=ON <« 0=1(mod2) because 0% 1(mod 2)
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Mutual Inductions — Example ’VPLRG

¢ (Induction Case): Assume that it holds for n (I.H.):

S(n) = OFF <= n=0(mod 2) (P—1.H.)
S(n) =0ON <= n=1(mod 2) (Q—1.H)
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Mutual Inductions — Example ’VPLRG

¢ (Induction Case): Assume that it holds for n (I.H.):

S(n) = OFF <= n=0(mod 2) (P—1.H.)
S(n) =0ON <= n=1(mod 2) (Q—1.H)
° (P, <)

S(n+1)=0FF < S(n)=0ON
<= n=1(mod ?2) (-Q—1H.)
<= n+1=0(mod2)
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Mutual Inductions — Example ’VPLRG

¢ (Induction Case): Assume that it holds for n (I.H.):

S(n) = OFF <= n=0(mod 2) (P—1.H.)
S(n) =0ON <= n=1(mod 2) (Q—1.H)
° (P, <)

S(n+1)=0FF < S(n)=0ON
<= n=1(mod ?2) (-Q—1H.)
<= n+1=0(mod2)

<= S(n) = OFF
<= n=0(mod 2) (-P—1H)
< n+1=1(mod2)
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Contents ’VNPLRG

3. Notations in Languages
Symbols & Words
Languages
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Symbols & Words ’NPLRG

e We first define a finite and non-empty set of symbols X.
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Symbols & Words ’NPLRG

e We first define a finite and non-empty set of symbols X.
® A word w € X* is a sequence of symbols.
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Symbols & Words ’NPLRG

e We first define a finite and non-empty set of symbols X.
® A word w € X* is a sequence of symbols.
e Y ={0,1} — binary symbols.

¢,0,1,00,01,10010, -- € ¥*
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Symbols & Words ’NPLRG

e We first define a finite and non-empty set of symbols X.
® A word w € X* is a sequence of symbols.
e Y ={0,1} — binary symbols.

¢,0,1,00,01,10010, -- € ¥*

® > ={a,b, .- ,z} — lowercase letters.

€,a, b, abc, hello, cs, students, - -- € X*
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Symbols & Words ’NPLRG

e We first define a finite and non-empty set of symbols X.
® A word w € X* is a sequence of symbols.
e Y ={0,1} — binary symbols.

¢,0,1,00,01,10010, -- € ¥*

® > ={a,b, .- ,z} — lowercase letters.

€,a, b, abc, hello, cs, students, - -- € X*

® ¥ = {a| ais an Unicode character} — Unicode characters.

6, OtESIM, CAICHIE, A MAD, .- € &F
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Symbols & Words ’NPLRG

Notation | Description
€ the empty word.
W1 Wo the concatenation of wy and ws.
(wq is a prefix of wywy and wy is a suffix of wyws)
wR the reverse of w.
|w| the length of w.
Pl the set of all words of length k.
Y+ the set of all words (the Kleene star).
(e, T¥ =Y0UT U - = Upsp ZK)
Yt the set of all words except € (the Kleene plus).
(e, T =3UT2U - = U1 ZX)
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Languages 7NPLRG

A language L C ¥* is a specific set of words.
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Languages 7NPLRG

A language L C ¥* is a specific set of words.

When ¥ = {0,1}, we can define the following languages:

® | ={¢0,1} — the empty word, zero, and one.
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Languages 7NPLRG

A language L C ¥* is a specific set of words.

When ¥ = {0,1}, we can define the following languages:

® | ={¢0,1} — the empty word, zero, and one.

e | ={¢0,1,00,01,10,11,000,--- } — all binary words.
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Languages 7NPLRG

A language L C ¥* is a specific set of words.

When ¥ = {0,1}, we can define the following languages:

® | ={¢0,1} — the empty word, zero, and one.
e | ={¢0,1,00,01,10,11,000,--- } — all binary words.

e [ ={0"1"| n> 0} — equal number of consecutive zeros and ones.
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Languages 7NPLRG

A language L C ¥* is a specific set of words.

When ¥ = {0,1}, we can define the following languages:

® | ={¢0,1} — the empty word, zero, and one.
e | ={¢0,1,00,01,10,11,000,--- } — all binary words.
e [ ={0"1"| n> 0} — equal number of consecutive zeros and ones.

e [ ={10,11,101,111,1011,--} — 7?27
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Languages — Operations 7NPLRG
¢ The union, intersection, and difference of languages:

LiU Ly LiNL Ll\L2
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Languages — Operations 7NPLRG
¢ The union, intersection, and difference of languages:

LiU Ly LiNL Ll\L2

® The reverse of a language:

LR={wR|wel}
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Languages — Operations 7NPLRG
¢ The union, intersection, and difference of languages:

LiU Ly LiNL Ll\L2

® The reverse of a language:

LR={wR|wel}

® The complement of a language:

L=3x*\L
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Languages — Operations 7NPLRG
¢ The union, intersection, and difference of languages:

LiU Ly LiNL Ll\L2

® The reverse of a language:
LR={wR|wel}
® The complement of a language:

L=3x*\L

® The concatenation of languages:

Lil, = {W1W2 | wi € Li Aws € L2}
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Languages — Operations

® The power of a language defined inductively:

L% = {e}
[n=1""1  (n>1)
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Languages — Operations 7NPLRG

® The power of a language defined inductively:

L% = {e}
[n=1""1  (n>1)

¢ The Kleene star of a language:

=1LOultulPu--- =L
n>0
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Languages — Operations 7NPLRG

® The power of a language defined inductively:

L% = {e}
[n=1""1  (n>1)

¢ The Kleene star of a language:

=1LOultulPu--- =L
n>0

¢ The Kleene plus of a language:

LF=r'vrPulPu-- =L
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Languages — Operations 7NPLRG

® The power of a language defined inductively:

L% = {e}
[n=1""1  (n>1)

¢ The Kleene star of a language:

=1LOultulPu--- =L
n>0

¢ The Kleene plus of a language:

LF=r'vrPulPu-- =L

® For any language L, are the following true?

® cc*
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Languages — Operations 7NPLRG

® The power of a language defined inductively:

L% = {e}
[n=1""1  (n>1)

¢ The Kleene star of a language:

=1LOultulPu--- =L
n>0

¢ The Kleene plus of a language:

LF=r'vrPulPu-- =L

® For any language L, are the following true?

® cc[* - Yes. Because e € [0 C L*
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Languages — Operations 7NPLRG

® The power of a language defined inductively:

L% = {e}
[n=1""1  (n>1)

¢ The Kleene star of a language:

=1LOultulPu--- =L
n>0

¢ The Kleene plus of a language:
LF=r'vrPulPu-- =L

® For any language L, are the following true?

® cc[* - Yes. Because e € [0 C L*
e LT
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Languages — Operations 7NPLRG

® The power of a language defined inductively:

L% = {e}
[n=1""1  (n>1)

¢ The Kleene star of a language:

=1LOultulPu--- =L
n>0

¢ The Kleene plus of a language:
LF=r'vrPulPu-- =L

® For any language L, are the following true?

® cc[* - Yes. Because e € [0 C L*
e cZlt—No. lfecl theneclL=1'CL"
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Languages — Operations 7NPLRG

® The power of a language defined inductively:

L% = {e}
[n=1""1  (n>1)

¢ The Kleene star of a language:

=1LOultulPu--- =L
n>0

¢ The Kleene plus of a language:
LF=r'vrPulPu-- =L

® For any language L, are the following true?

® cc[* - Yes. Because e € [0 C L*
e cZlt—No. lfecl theneclL=1'CL"
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Summary ’VPLRG

1. Mathematical Notations
Notations in Logics
Notations in Set Theory

2. Inductive Proofs
Inductions on Integers
Structural Inductions
Mutual Inductions

3. Notations in Languages
Symbols & Words
Languages
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Next Lecture ’VNPLRG

® Basic Introduction of Scala

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr
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