Lecture 1 – Mathematical Preliminaries COSE215: Theory of Computation

Jihyeok Park

2025 Spring

Roadmap: Towards Turing Machine

A Turing machine is a specific kind of **automaton**.

- Part 1: Finite Automata (FA)
 - Regular Expressions (REs)
 - Regular Languages (RLs)
 - Applications: text search, etc.
- Part 2: Pushdown Automata (PDA)
 - Context-Free Grammars (CFGs)
 - Context-Free Languages (CFLs)
 - Applications: programming languages, natural language processing, etc.
- Part 3: Turing Machines (TMs)
 - Lambda Calculus (LC)
 - Recursively Enumerable Languages (RELs)
 - Undecidability and Intractability

Recall

Theorem

The current state is OFF if and only if the button is pushed even times.

• Is it possible to prove it?

Let's learn mathematical background and notation.

Contents

1. Mathematical Notations

Notations in Logics Notations in Set Theory

2. Inductive Proofs

Inductions on Integers Structural Inductions Mutual Inductions

3. Notations in Languages

Symbols & Words Languages

Contents

- Mathematical Notations
 Notations in Logics
 Notations in Set Theory
- 2. Inductive Proofs
 Inductions on Integers
 Structural Inductions
 Mutual Inductions
- Notations in Languages
 Symbols & Words
 Languages

Notation	Description
A, B	arbitrary statements .
P(x)	a predicate is a statement having variables (e.g., x).
$A \wedge B$	the conjunction of A and B . (i.e., " A and B ").
$A \vee B$	the disjunction of A and B . (i.e., " A or B ").
$\neg A$	the negation of A . (i.e., "not A ").

Notation	Description
A, B	arbitrary statements .
P(x)	a predicate is a statement having variables (e.g., x).
$A \wedge B$	the conjunction of A and B . (i.e., " A and B ").
$A \vee B$	the disjunction of A and B . (i.e., " A or B ").
$\neg A$	the negation of A . (i.e., "not A ").

(De Morgan's Laws) =
$$\begin{cases} \neg(A \land B) = \neg A \lor \neg B \\ \neg(A \lor B) = \neg A \land \neg B \end{cases}$$

Notation	Description
A, B	arbitrary statements .
P(x)	a predicate is a statement having variables (e.g., x).
$A \wedge B$	the conjunction of A and B . (i.e., " A and B ").
$A \vee B$	the disjunction of A and B . (i.e., " A or B ").
$\neg A$	the negation of A . (i.e., "not A ").

(De Morgan's Laws) =
$$\begin{cases} \neg(A \land B) = \neg A \lor \neg B \\ \neg(A \lor B) = \neg A \land \neg B \end{cases}$$

Notation	Description
$A \Rightarrow B$	the implication of A and B
	(i.e., "if A then B " or " A implies B ")
	(i.e., $\neg A \lor B$).
$A \Leftrightarrow B$	A if and only if (iff) B
	(i.e., $A \Rightarrow B \land B \Rightarrow A$).
$\forall x \in X. P(x)$	the universal quantifier
	(i.e., "for all x in X , $P(x)$ holds").
$\exists x \in X. \ P(x)$	the existential quantifier
	(i.e., "there exists x in X such that $P(x)$ holds").

• A **set** is a collection of elements.

- A set is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$

- A set is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$
 - (Natural Numbers) = $\mathbb{N} = \{0, 1, 2, \cdots\}$

- A **set** is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$
 - (Natural Numbers) = $\mathbb{N} = \{0, 1, 2, \dots\}$
 - (Squares of \mathbb{N}) = $\{x^2 \mid x \in \mathbb{N}\} = \{0, 1, 4, 9, 16, 25, 36, \dots\}$

- A **set** is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$
 - (Natural Numbers) = $\mathbb{N} = \{0, 1, 2, \cdots\}$
 - (Squares of \mathbb{N}) = $\{x^2 \mid x \in \mathbb{N}\} = \{0, 1, 4, 9, 16, 25, 36, \cdots\}$
 - (Even Numbers) = $\{x \in \mathbb{N} \mid x \equiv 0 \pmod{2}\} = \{0, 2, 4, 6, 8, \dots\}$

where
$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z}. \ a = b + kn$$

- A set is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$
 - (Natural Numbers) = $\mathbb{N} = \{0, 1, 2, \cdots\}$
 - (Squares of \mathbb{N}) = $\{x^2 \mid x \in \mathbb{N}\} = \{0, 1, 4, 9, 16, 25, 36, \cdots\}$
 - (Even Numbers) = $\{x \in \mathbb{N} \mid x \equiv 0 \pmod{2}\} = \{0, 2, 4, 6, 8, \cdots\}$

where
$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z}. \ a = b + kn$$

(i.e., a is congruent to b modulo n)

• The **empty set** is denoted by \varnothing .

- A set is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$
 - (Natural Numbers) = $\mathbb{N} = \{0, 1, 2, \cdots\}$
 - (Squares of \mathbb{N}) = $\{x^2 \mid x \in \mathbb{N}\} = \{0, 1, 4, 9, 16, 25, 36, \cdots\}$
 - (Even Numbers) = $\{x \in \mathbb{N} \mid x \equiv 0 \pmod{2}\} = \{0, 2, 4, 6, 8, \cdots\}$

where
$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z}. \ a = b + kn$$

- The empty set is denoted by Ø.
- The **cardinality** of a set X is denoted by |X|.

- A set is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$
 - (Natural Numbers) = $\mathbb{N} = \{0, 1, 2, \cdots\}$
 - (Squares of \mathbb{N}) = $\{x^2 \mid x \in \mathbb{N}\} = \{0, 1, 4, 9, 16, 25, 36, \cdots\}$
 - (Even Numbers) = $\{x \in \mathbb{N} \mid x \equiv 0 \pmod{2}\} = \{0, 2, 4, 6, 8, \cdots\}$

where
$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z}. \ a = b + kn$$

- The empty set is denoted by Ø.
- The **cardinality** of a set X is denoted by |X|.
- x is an **element** of a set X is denoted by $x \in X$.

- A set is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$
 - (Natural Numbers) = $\mathbb{N} = \{0, 1, 2, \cdots\}$
 - (Squares of \mathbb{N}) = $\{x^2 \mid x \in \mathbb{N}\} = \{0, 1, 4, 9, 16, 25, 36, \cdots\}$
 - (Even Numbers) = $\{x \in \mathbb{N} \mid x \equiv 0 \pmod{2}\} = \{0, 2, 4, 6, 8, \cdots\}$

where
$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z}. \ a = b + kn$$

- The empty set is denoted by Ø.
- The **cardinality** of a set X is denoted by |X|.
- x is an **element** of a set X is denoted by $x \in X$.
- X is a **subset** of Y is denoted by $X \subseteq Y$.

$$X \subseteq Y \iff \forall x \in X. \ x \in Y$$

- A set is a collection of elements. For example,
 - (Integers) = $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$
 - (Natural Numbers) = $\mathbb{N} = \{0, 1, 2, \cdots\}$
 - (Squares of \mathbb{N}) = $\{x^2 \mid x \in \mathbb{N}\} = \{0, 1, 4, 9, 16, 25, 36, \cdots\}$
 - (Even Numbers) = $\{x \in \mathbb{N} \mid x \equiv 0 \pmod{2}\} = \{0, 2, 4, 6, 8, \cdots\}$

where
$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z}. \ a = b + kn$$

(i.e., a is **congruent** to b **modulo** n)

- The empty set is denoted by Ø.
- The **cardinality** of a set X is denoted by |X|.
- x is an **element** of a set X is denoted by $x \in X$.
- X is a **subset** of Y is denoted by $X \subseteq Y$.

$$X \subseteq Y \iff \forall x \in X. \ x \in Y$$

• X is a **proper subset** of Y is denoted by $X \subset Y$.

$$X \subset Y \iff X \subset Y \land X \neq Y$$

• The union of sets

$$X \cup Y = \{x \mid x \in X \lor x \in Y\}$$

• The union of sets

$$X \cup Y = \{x \mid x \in X \lor x \in Y\}$$

$$\bigcup \mathcal{C} = X_1 \cup X_2 \cup \cdots \cup X_n = \{x \mid \exists X \in \mathcal{C}. \ x \in X\}$$

where $C = \{X_1, X_2, \cdots, X_n\}$.

• The **union** of sets

$$X \cup Y = \{x \mid x \in X \lor x \in Y\}$$

$$\bigcup \mathcal{C} = X_1 \cup X_2 \cup \cdots \cup X_n = \{x \mid \exists X \in \mathcal{C}. x \in X\}$$

• The intersection of sets

where $\mathcal{C} = \{X_1, X_2, \cdots, X_n\}$.

$$X \cap Y = \{x \mid x \in X \land x \in Y\}$$

• The **union** of sets

$$X \cup Y = \{x \mid x \in X \lor x \in Y\}$$

$$\bigcup \mathcal{C} = X_1 \cup X_2 \cup \cdots \cup X_n = \{x \mid \exists X \in \mathcal{C}. \ x \in X\}$$

where $C = \{X_1, X_2, \cdots, X_n\}$.

• The intersection of sets

$$X \cap Y = \{x \mid x \in X \land x \in Y\}$$

$$\cap \mathcal{C} = X_1 \cap X_2 \cap \cdots \cap X_n = \{x \mid \forall X \in \mathcal{C}. \ x \in X\}$$

where $C = \{X_1, X_2, \cdots, X_n\}$.

• The **union** of sets

$$X \cup Y = \{x \mid x \in X \lor x \in Y\}$$

$$\bigcup \mathcal{C} = X_1 \cup X_2 \cup \cdots \cup X_n = \{x \mid \exists X \in \mathcal{C}. \ x \in X\}$$

where $C = \{X_1, X_2, \cdots, X_n\}$.

• The intersection of sets

$$X \cap Y = \{x \mid x \in X \land x \in Y\}$$

$$\cap \mathcal{C} = X_1 \cap X_2 \cap \dots \cap X_n = \{x \mid \forall X \in \mathcal{C}. \ x \in X\}$$

where $C = \{X_1, X_2, \cdots, X_n\}$.

• The **difference** of sets

$$X \setminus Y = \{x \mid x \in X \land x \notin Y\}$$

• The **complement** of a set X is denoted by \overline{X} .

$$\overline{X} = \{ x \mid x \in U \land x \notin X \}$$

where U is the **universal set**.

• The **complement** of a set X is denoted by \overline{X} .

$$\overline{X} = \{ x \mid x \in U \land x \notin X \}$$

where U is the **universal set**.

• The **power set** of a set X is denoted by 2^X or $\mathcal{P}(X)$.

$$2^X = \mathcal{P}(X) = \{Y \mid Y \subseteq X\}$$

• The **complement** of a set X is denoted by \overline{X} .

$$\overline{X} = \{ x \mid x \in U \land x \notin X \}$$

where U is the **universal set**.

• The **power set** of a set X is denoted by 2^X or $\mathcal{P}(X)$.

$$2^X = \mathcal{P}(X) = \{Y \mid Y \subseteq X\}$$

• The Cartesian product of sets X and Y is denoted by $X \times Y$.

$$X \times Y = \{(x, y) \mid x \in X \land y \in Y\}$$

Contents

- Mathematical Notations
 Notations in Logics
 Notations in Set Theory
- 2. Inductive Proofs
 Inductions on Integers
 Structural Inductions
 Mutual Inductions
- Notations in Languages
 Symbols & Words
 Languages

Inductions on Integers

Definition (Inductions on Integers)

Let P(n) be a predicate on integers, and if

- (Basis Case) P(k) holds where k is an integer, and
- (Induction Case) for all integer $n \ge k$, $P(n) \Rightarrow P(n+1)$,

then P(i) holds for all $i \geq k$.

P(n) is called **induction hypothesis** (I.H.).

Inductions on Integers

Definition (Inductions on Integers)

Let P(n) be a predicate on integers, and if

- (Basis Case) P(k) holds where k is an integer, and
- (Induction Case) for all integer $n \ge k$, $P(n) \Rightarrow P(n+1)$,

then P(i) holds for all $i \geq k$.

P(n) is called **induction hypothesis** (I.H.).

Example

Prove that
$$\forall n \geq 0$$
. $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Proof)

Example

Prove that $\forall n \geq 0$. $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Proof)

• (Basis Case): 0 = 0(0+1)/2

Example

Prove that
$$\forall n \geq 0$$
. $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Proof)

- (Basis Case): 0 = 0(0+1)/2
- (Induction Case): Assume that it holds for n (I.H.)

Then, let's prove it for n + 1:

Example

Prove that $\forall n \geq 0$. $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Proof)

- (Basis Case): 0 = 0(0+1)/2
- (Induction Case): Assume that it holds for n (I.H.)

Then, let's prove it for n + 1:

$$\sum_{i=0}^{n+1} i = (n+1) + \sum_{i=0}^{n} i$$

$$= (n+1) + \frac{n(n+1)}{2} \qquad (\because I.H.)$$

$$= \frac{(n+1)(n+2)}{2} \quad \Box$$

Example

Prove that
$$\forall n \geq 0$$
. $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Proof)

Example

Prove that
$$\forall n \geq 0$$
. $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Proof)

• (Basis Case):
$$0^2 = 0(0+1)(2*0+1)/6$$

Inductions on Integers – Example 2

Example

Prove that
$$\forall n \geq 0$$
. $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Proof)

- (Basis Case): $0^2 = 0(0+1)(2*0+1)/6$
- (Induction Case): Assume that it holds for n (I.H.).

Then, let's prove it for n + 1:

$$\sum_{i=0}^{n+1} i^2 = (n+1)^2 + \sum_{i=0}^{n} i^2$$

$$= (n+1)^2 + \frac{n(n+1)(2n+1)}{6} \qquad (\because I.H.)$$

$$= \frac{(n+1)(n+2)(2(n+1)+1)}{6} \qquad \Box$$

Structural Inductions – Inductive Definitions

In CS, we often define somethings as **inductively-defined sets**. For example, we can define **trees** as follows:

Example (Inductive Definition of Trees)

A tree is defined as follows:

- (Basis Case) A single node N is a tree.
- (Induction Case) If T_1, \dots, T_n are trees, then a graph defined with a new root node N and edges from N to T_1, \dots, T_n is a tree.

Structural Inductions – Inductive Definitions

Another example is a set of arithmetic expressions:

Example (Inductive Definition of Arithmetic Expressions)

An arithmetic expression is defined as follows:

- (Basis Case) A number or a variable is an arithmetic expression.
- (Induction Case) If E and F are arithmetic expressions, then so are E+F, E*F, and (E).

42	x	x + y
42 * x	(x)	(x * y) * z
2 + x) * y	x * (x * y)	((((x))))

Structural Inductions

Definition (Structural Inductions)

Let P(x) be a predicate on a **inductively-defined set** X, and if

- (Basis Case) $P(b_1), \dots, P(b_k)$ hold for all basis cases b_1, \dots, b_k .
- (Induction Case) for all $x \in X$,

$$P(x_1) \wedge \cdots \wedge P(x_n) \Rightarrow P(x)$$

where x_1, \dots, x_n are the **sub-structures** of x.

then P(x) holds for all $x \in X$.

 $P(x_1), \dots, P(x_n)$ are called **induction hypotheses**.

Structural Inductions

Definition (Structural Inductions)

Let P(x) be a predicate on a **inductively-defined set** X, and if

- (Basis Case) $P(b_1), \dots, P(b_k)$ hold for all basis cases b_1, \dots, b_k .
- (Induction Case) for all $x \in X$,

$$P(x_1) \wedge \cdots \wedge P(x_n) \Rightarrow P(x)$$

where x_1, \dots, x_n are the **sub-structures** of x.

then P(x) holds for all $x \in X$.

 $P(x_1), \dots, P(x_n)$ are called **induction hypotheses**.

Example

Prove that for all tree T, the number of nodes in T is equal to the number of edges in T plus one.

Proof)

Example

Prove that for all tree T, the number of nodes in T is equal to the number of edges in T plus one.

Proof) Let N(T) be the number of node and E(T) be the number of edges in T. Let's prove $\forall T$. N(T) = E(T) + 1.

Example

Prove that for all tree T, the number of nodes in T is equal to the number of edges in T plus one.

Proof) Let N(T) be the number of node and E(T) be the number of edges in T. Let's prove $\forall T$. N(T) = E(T) + 1.

• (Basis Case): N(T) = 1 and E(T) = 0.

Example

Prove that for all tree T, the number of nodes in T is equal to the number of edges in T plus one.

Proof) Let N(T) be the number of node and E(T) be the number of edges in T. Let's prove $\forall T$. N(T) = E(T) + 1.

- (Basis Case): N(T) = 1 and E(T) = 0.
- (Induction Case): Assume that it holds for T_1, \dots, T_n (I.H.). Then,

$$N(T) = 1 + \sum_{i=1}^{n} N(T_i)$$

= $1 + \sum_{i=1}^{n} (E(T_i) + 1)$ (:: I.H.)
= $1 + n + \sum_{i=1}^{n} E(T_i)$
= $1 + E(T)$

Example

Prove that for all arithmetic expression E, the number of left parentheses in E is equal to the number of right parentheses in E.

Proof)

Example

Prove that for all arithmetic expression E, the number of left parentheses in E is equal to the number of right parentheses in E.

Example

Prove that for all arithmetic expression E, the number of left parentheses in E is equal to the number of right parentheses in E.

Proof) Let L(E) be the number of left parentheses and R(E) be the number of right parentheses in E. Let's prove $\forall E$. L(E) = R(E).

• (Basis Case): L(E) = R(E) = 0 for numbers and variables.

Example

Prove that for all arithmetic expression E, the number of left parentheses in E is equal to the number of right parentheses in E.

- (Basis Case): L(E) = R(E) = 0 for numbers and variables.
- (Induction Case): Assume that it holds for E and F (I.H.). Then,

$$L(E+F) = L(E) + L(F) = R(E) + R(F) \qquad (\because I.H.)$$
$$= R(E+F) \quad \Box$$

Example

Prove that for all arithmetic expression E, the number of left parentheses in E is equal to the number of right parentheses in E.

- (Basis Case): L(E) = R(E) = 0 for numbers and variables.
- (Induction Case): Assume that it holds for E and F (I.H.). Then,

$$L(E+F) = L(E) + L(F) = R(E) + R(F) \qquad (\because I.H.)$$

$$= R(E+F) \quad \Box$$

$$L(E*F) = L(E) + L(F) = R(E) + R(F) \qquad (\because I.H.)$$

$$= R(E*F) \quad \Box$$

Example

Prove that for all arithmetic expression E, the number of left parentheses in E is equal to the number of right parentheses in E.

- (Basis Case): L(E) = R(E) = 0 for numbers and variables.
- (Induction Case): Assume that it holds for E and F (I.H.). Then,

$$L(E+F) = L(E) + L(F) = R(E) + R(F)$$
 (: I.H.)
 $= R(E+F)$ \square
 $L(E*F) = L(E) + L(F) = R(E) + R(F)$ (: I.H.)
 $= R(E*F)$ \square
 $L((E)) = L(E) + 1 = R(E) + 1$ (: I.H.)
 $= R((E))$ \square

Mutual Inductions

Sometimes, we need to prove multiple predicates simultaneously.

Definition (Mutual Inductions)

Let P(x) and Q(x) are predicates on integers, and if

- (Basis Case) P(k) and Q(k) hold where k is an integer, and
- (Induction Case) for all $n \ge k$,

$$P(n) \wedge Q(n) \Rightarrow P(n+1) \wedge Q(n+1)$$

then P(i) and Q(i) hold for all $i \geq k$.

P(n) and Q(n) are called **induction hypotheses**.

Mutual Inductions

Sometimes, we need to prove multiple predicates simultaneously.

Definition (Mutual Inductions)

Let P(x) and Q(x) are predicates on integers, and if

- (Basis Case) P(k) and Q(k) hold where k is an integer, and
- (Induction Case) for all $n \ge k$,

$$P(n) \wedge Q(n) \Rightarrow P(n+1) \wedge Q(n+1)$$

then P(i) and Q(i) hold for all $i \geq k$.

P(n) and Q(n) are called **induction hypotheses**.

Theorem

The current state is OFF if and only if the button is pushed **even** times.

It is difficult to prove it with only one predicate.

Theorem

The current state is OFF if and only if the button is pushed **even** times.

It is difficult to prove it with only one predicate.

Let's prove it with two predicates:

Theorem

The current state is OFF if and only if the button is pushed **even** times, and the current state is ON if and only if the button is pushed **odd** times.

Theorem

The current state is OFF if and only if the button is pushed **even** times, and the current state is ON if and only if the button is pushed **odd** times.

Proof)

Theorem

The current state is OFF if and only if the button is pushed **even** times, and the current state is ON if and only if the button is pushed **odd** times.

$$\forall i \ge 0. \ S(i) = \mathsf{OFF} \iff i \equiv 0 \ (\mathsf{mod} \ 2) \tag{P}$$

$$\forall i \geq 0. \ S(i) = \mathsf{ON} \iff i \equiv 1 \ (\mathsf{mod} \ 2)$$
 (Q)

Theorem

The current state is OFF if and only if the button is pushed **even** times, and the current state is ON if and only if the button is pushed **odd** times.

Proof) Let S(i) be the current state after i times of pushing. Let's prove

$$\forall i \geq 0. \ S(i) = \mathsf{OFF} \iff i \equiv 0 \ (\mathsf{mod}\ 2)$$
 (P)

$$\forall i \geq 0. \ S(i) = \mathsf{ON} \iff i \equiv 1 \ (\mathsf{mod} \ 2)$$
 (Q)

• (Basis Case): Known facts: S(0) = OFF and $0 \equiv 0 \pmod{2}$

Theorem

The current state is OFF if and only if the button is pushed **even** times, and the current state is ON if and only if the button is pushed **odd** times.

$$\forall i \ge 0. \ S(i) = \mathsf{OFF} \iff i \equiv 0 \ (\mathsf{mod} \ 2) \tag{P}$$

$$\forall i \geq 0. \ S(i) = \mathsf{ON} \iff i \equiv 1 \ (\mathsf{mod} \ 2)$$
 (Q)

- (Basis Case): Known facts: S(0) = OFF and $0 \equiv 0 \pmod{2}$
 - (P, \Rightarrow) : $S(0) = OFF \Rightarrow 0 \equiv 0 \pmod{2}$ because $0 \equiv 0 \pmod{2}$

Theorem

The current state is OFF if and only if the button is pushed **even** times, and the current state is ON if and only if the button is pushed **odd** times.

$$\forall i \ge 0. \ S(i) = \mathsf{OFF} \iff i \equiv 0 \ (\mathsf{mod} \ 2) \tag{P}$$

$$\forall i \geq 0. \ S(i) = \mathsf{ON} \iff i \equiv 1 \ (\mathsf{mod} \ 2)$$
 (Q)

- (Basis Case): Known facts: S(0) = OFF and $0 \equiv 0 \pmod{2}$
 - (P, \Rightarrow) : $S(0) = OFF \Rightarrow 0 \equiv 0 \pmod{2}$ because $0 \equiv 0 \pmod{2}$
 - (P, \Leftarrow) : $S(0) = \mathsf{OFF} \iff 0 \equiv 0 \pmod{2}$ because $S(0) = \mathsf{OFF}$

Theorem

The current state is OFF if and only if the button is pushed **even** times, and the current state is ON if and only if the button is pushed **odd** times.

$$\forall i \ge 0. \ S(i) = \mathsf{OFF} \iff i \equiv 0 \ (\mathsf{mod} \ 2) \tag{P}$$

$$\forall i \geq 0. \ S(i) = \mathsf{ON} \iff i \equiv 1 \ (\mathsf{mod} \ 2)$$
 (Q)

- (Basis Case): Known facts: S(0) = OFF and $0 \equiv 0 \pmod{2}$
 - (P, \Rightarrow) : $S(0) = OFF \Rightarrow 0 \equiv 0 \pmod{2}$ because $0 \equiv 0 \pmod{2}$
 - (P, \Leftarrow) : $S(0) = \mathsf{OFF} \iff 0 \equiv 0 \pmod{2}$ because $S(0) = \mathsf{OFF}$
 - (Q, \Rightarrow) : $S(0) = ON \Rightarrow 0 \equiv 1 \pmod{2}$ because $S(0) \neq ON$

Theorem

The current state is OFF if and only if the button is pushed **even** times, and the current state is ON if and only if the button is pushed **odd** times.

$$\forall i \ge 0. \ S(i) = \mathsf{OFF} \iff i \equiv 0 \ (\mathsf{mod} \ 2) \tag{P}$$

$$\forall i \geq 0. \ S(i) = \mathsf{ON} \iff i \equiv 1 \ (\mathsf{mod} \ 2)$$
 (Q)

- (Basis Case): Known facts: S(0) = OFF and $0 \equiv 0 \pmod{2}$
 - (P, \Rightarrow) : $S(0) = OFF \Rightarrow 0 \equiv 0 \pmod{2}$ because $0 \equiv 0 \pmod{2}$
 - (P, \Leftarrow) : $S(0) = \mathsf{OFF} \iff 0 \equiv 0 \pmod{2}$ because $S(0) = \mathsf{OFF}$
 - $\bullet \ \ \underline{(\textit{Q},\,\Rightarrow)} \hbox{:} \quad \textit{S}(0) = \mathsf{ON} \ \Rightarrow \ 0 \equiv 1 \ (\mathsf{mod} \ 2) \quad \ \ \mathsf{because} \quad \ \ \textit{S}(0) \neq \mathsf{ON}$
 - (Q, \Leftarrow) : $S(0) = ON \Leftarrow 0 \equiv 1 \pmod{2}$ because $0 \not\equiv 1 \pmod{2}$

• (Induction Case): Assume that it holds for n (I.H.):

$$S(n) = OFF \iff n \equiv 0 \pmod{2}$$
 $(P - I.H.)$

$$S(n) = ON \iff n \equiv 1 \pmod{2}$$
 $(Q - I.H.)$

• (Induction Case): Assume that it holds for *n* (I.H.):

$$S(n) = \mathsf{OFF} \iff n \equiv 0 \pmod{2}$$
 $(P - I.H.)$
 $S(n) = \mathsf{ON} \iff n \equiv 1 \pmod{2}$ $(Q - I.H.)$

• (*P*, ⇔):

$$S(n+1) = \mathsf{OFF} \iff S(n) = \mathsf{ON}$$

 $\iff n \equiv 1 \pmod{2} \pmod{2}$
 $\iff n+1 \equiv 0 \pmod{2}$

• (Induction Case): Assume that it holds for *n* (I.H.):

$$S(n) = \mathsf{OFF} \iff n \equiv 0 \pmod{2}$$
 $(P - I.H.)$
 $S(n) = \mathsf{ON} \iff n \equiv 1 \pmod{2}$ $(Q - I.H.)$

• (*P*, ⇔):

$$S(n+1) = \mathsf{OFF} \iff S(n) = \mathsf{ON}$$

 $\iff n \equiv 1 \pmod{2} \quad (\because Q - I.H.)$
 $\iff n+1 \equiv 0 \pmod{2}$

• (Q, ⇔):

$$S(n+1) = ON \iff S(n) = OFF$$

 $\iff n \equiv 0 \pmod{2} \pmod{2}$
 $\iff n+1 \equiv 1 \pmod{2}$

Contents

- Mathematical Notations
 Notations in Logics
 Notations in Set Theory
- 2. Inductive Proofs
 Inductions on Integers
 Structural Inductions
 Mutual Inductions
- Notations in Languages
 Symbols & Words
 Languages

• We first define a finite and non-empty set of **symbols** Σ .

- We first define a finite and non-empty set of **symbols** Σ .
- A **word** $w \in \Sigma^*$ is a sequence of symbols.

- We first define a finite and non-empty set of **symbols** Σ .
- A word $w \in \Sigma^*$ is a sequence of symbols.
 - $\Sigma = \{0, 1\}$ binary symbols.

$$\epsilon,0,1,00,01,10010,\dots \in \Sigma^*$$

- We first define a finite and non-empty set of **symbols** Σ .
- A **word** $w \in \Sigma^*$ is a sequence of symbols.
 - $\Sigma = \{0, 1\}$ binary symbols.

$$\epsilon,0,1,00,01,10010,\dots \in \Sigma^*$$

• $\Sigma = \{a, b, \dots, z\}$ – lowercase letters.

 $\epsilon, \mathsf{a}, \mathsf{b}, \mathsf{abc}, \mathsf{hello}, \mathsf{cs}, \mathsf{students}, \dots \in \Sigma^*$

- We first define a finite and non-empty set of **symbols** Σ .
- A word $w \in \Sigma^*$ is a sequence of symbols.
 - $\Sigma = \{0,1\}$ binary symbols.

$$\epsilon,0,1,00,01,10010,\dots \in \Sigma^*$$

• $\Sigma = \{\mathsf{a},\mathsf{b},\cdots,\mathsf{z}\}$ – lowercase letters.

$$\epsilon$$
, a, b, abc, hello, cs, students, $\cdots \in \Sigma^*$

• $\Sigma = \{a \mid a \text{ is an Unicode character}\}$ – Unicode characters.

$$\epsilon$$
, 안녕하세요, こんにちは, $\bigstar lacktriangle lackt$

Notation	Description	
ϵ	the empty word .	
w_1w_2	the concatenation of w_1 and w_2 .	
	$(w_1 \text{ is a prefix of } w_1w_2 \text{ and } w_2 \text{ is a suffix of } w_1w_2)$	
w^R	the reverse of w.	
w	the length of w.	
Σ^k	the set of all words of length k .	
Σ^*	the set of all words (the Kleene star).	
	(i.e., $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \dots = \bigcup_{k \geq 0} \Sigma^k$)	
Σ^+	the set of all words except ϵ (the Kleene plus).	
	(i.e., $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{k \geq 1} \Sigma^k$)	

A **language** $L \subseteq \Sigma^*$ is a specific set of words.

A **language** $L \subseteq \Sigma^*$ is a specific set of words.

When $\Sigma = \{0, 1\}$, we can define the following languages:

• $L = \{\epsilon, 0, 1\}$ – the empty word, zero, and one.

A **language** $L \subseteq \Sigma^*$ is a specific set of words.

When $\Sigma = \{0, 1\}$, we can define the following languages:

- $L = \{\epsilon, 0, 1\}$ the empty word, zero, and one.
- $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$ all binary words.

A **language** $L \subseteq \Sigma^*$ is a specific set of words.

When $\Sigma = \{0, 1\}$, we can define the following languages:

- $L = \{\epsilon, 0, 1\}$ the empty word, zero, and one.
- $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$ all binary words.
- $L = \{0^n 1^n \mid n \ge 0\}$ equal number of consecutive zeros and ones.

A **language** $L \subseteq \Sigma^*$ is a specific set of words.

When $\Sigma = \{0, 1\}$, we can define the following languages:

- $L = \{\epsilon, 0, 1\}$ the empty word, zero, and one.
- $L = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \cdots\}$ all binary words.
- $L = \{0^n 1^n \mid n \ge 0\}$ equal number of consecutive zeros and ones.
- $L = \{10, 11, 101, 111, 1011, \dots\} ???$

• The union, intersection, and difference of languages:

$$L_1 \cup L_2$$
 $L_1 \cap L_2$ $L_1 \setminus L_2$

• The union, intersection, and difference of languages:

$$L_1 \cup L_2$$
 $L_1 \cap L_2$ $L_1 \setminus L_2$

• The reverse of a language:

$$L^R = \{ w^R \mid w \in L \}$$

• The union, intersection, and difference of languages:

$$L_1 \cup L_2$$
 $L_1 \cap L_2$ $L_1 \setminus L_2$

• The reverse of a language:

$$L^R = \{ w^R \mid w \in L \}$$

• The complement of a language:

$$\overline{L} = \Sigma^* \setminus L$$

• The union, intersection, and difference of languages:

$$L_1 \cup L_2$$
 $L_1 \cap L_2$ $L_1 \setminus L_2$

• The reverse of a language:

$$L^R = \{ w^R \mid w \in L \}$$

• The **complement** of a language:

$$\overline{L} = \Sigma^* \setminus L$$

The concatenation of languages:

$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

• The **power** of a language defined inductively:

$$L^0 = \{\epsilon\}$$

$$L^n = L^{n-1}L \qquad (n \ge 1)$$

• The **power** of a language defined inductively:

$$L^{0} = \{\epsilon\}$$

$$L^{n} = L^{n-1}L \qquad (n \ge 1)$$

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

• The **power** of a language defined inductively:

$$L^{0} = \{\epsilon\}$$

$$L^{n} = L^{n-1}L \qquad (n \ge 1)$$

The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{n \ge 1} L^n$$

• The **power** of a language defined inductively:

$$L^{0} = \{\epsilon\}$$

$$L^{n} = L^{n-1}L \qquad (n \ge 1)$$

The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{n \ge 1} L^n$$

- For any language L, are the following true?
 - $\epsilon \in L^*$

• The **power** of a language defined inductively:

$$L^{0} = \{\epsilon\}$$

$$L^{n} = L^{n-1}L \qquad (n \ge 1)$$

The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{n \ge 1} L^n$$

- For any language *L*, are the following true?
 - $\epsilon \in L^*$ Yes. Because $\epsilon \in L^0 \subseteq L^*$

• The **power** of a language defined inductively:

$$L^{0} = \{\epsilon\}$$

$$L^{n} = L^{n-1}L \qquad (n \ge 1)$$

The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{n \ge 1} L^n$$

- For any language *L*, are the following true?
 - $\epsilon \in L^*$ Yes. Because $\epsilon \in L^0 \subseteq L^*$
 - $\epsilon \not\in L^+$

• The **power** of a language defined inductively:

$$L^{0} = \{\epsilon\}$$

$$L^{n} = L^{n-1}L \qquad (n \ge 1)$$

The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{n \ge 1} L^n$$

- For any language L, are the following true?
 - $\epsilon \in L^*$ Yes. Because $\epsilon \in L^0 \subseteq L^*$
 - $\epsilon \notin L^+$ No. If $\epsilon \in L$, then $\epsilon \in L = L^1 \subseteq L^+$

• The **power** of a language defined inductively:

$$L^{0} = \{\epsilon\}$$

$$L^{n} = L^{n-1}L \qquad (n \ge 1)$$

The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{n \ge 1} L^n$$

- For any language L, are the following true?
 - $\epsilon \in L^*$ Yes. Because $\epsilon \in L^0 \subseteq L^*$
 - $\epsilon \notin L^+$ No. If $\epsilon \in L$, then $\epsilon \in L = L^1 \subseteq L^+$

Summary

1. Mathematical Notations

Notations in Logics Notations in Set Theory

2. Inductive Proofs

Inductions on Integers Structural Inductions Mutual Inductions

3. Notations in Languages

Symbols & Words Languages

Next Lecture

Basic Introduction of Scala

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr