
Lecture 13 – Parse Trees and Ambiguity
COSE215: Theory of Computation

Jihyeok Park

2025 Spring

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 1 / 26

Recall
• A context-free grammar (CFG):

G = (V , Σ, S, R)

• The language of a CFG G :

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

• A language L is a context-free language (CFL):

∃ CFG G . L(G) = L

• For a given word w ∈ L(G), a derivation for w is S ⇒∗ w
• A sequence α ∈ (V ∪ Σ)∗ is a sentential form if S ⇒∗ α.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 2 / 26

Contents

1. Parse Trees
Definition
Yields
Relationship between Parse Trees and Derivations

2. Ambiguity
Ambiguous Grammars
Eliminating Ambiguity
Inherent Ambiguity

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 3 / 26

Contents

1. Parse Trees
Definition
Yields
Relationship between Parse Trees and Derivations

2. Ambiguity
Ambiguous Grammars
Eliminating Ambiguity
Inherent Ambiguity

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 4 / 26

Parse Trees
Consider the following CFG for balanced parentheses:

S → ϵ | (S) | SS

There are two different derivations for the sentential form (S)(S):

1 S ⇒L SS ⇒L (S)S ⇒ (S)(S)

2 S ⇒R SS ⇒R S(S) ⇒ (S)(S)

However, parse trees focus on the structure of the derivations instead of
considering the order of the derivation steps.

For example, the above two derivations have the same parse tree:

S

S

)S(

S

)S(

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 5 / 26

Parse Trees
Consider the following CFG for balanced parentheses:

S → ϵ | (S) | SS

There are two different derivations for the sentential form (S)(S):

1 S ⇒L SS ⇒L (S)S ⇒ (S)(S)

2 S ⇒R SS ⇒R S(S) ⇒ (S)(S)

However, parse trees focus on the structure of the derivations instead of
considering the order of the derivation steps.

For example, the above two derivations have the same parse tree:

S

S

)S(

S

)S(

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 5 / 26

Parse Trees
Consider the following CFG for balanced parentheses:

S → ϵ | (S) | SS

There are two different derivations for the sentential form (S)(S):

1 S ⇒L SS ⇒L (S)S ⇒ (S)(S)

2 S ⇒R SS ⇒R S(S) ⇒ (S)(S)

However, parse trees focus on the structure of the derivations instead of
considering the order of the derivation steps.

For example, the above two derivations have the same parse tree:

S

S

)S(

S

)S(

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 5 / 26

Parse Trees
Consider the following CFG for balanced parentheses:

S → ϵ | (S) | SS

There are two different derivations for the sentential form (S)(S):

1 S ⇒L SS ⇒L (S)S ⇒ (S)(S)

2 S ⇒R SS ⇒R S(S) ⇒ (S)(S)

However, parse trees focus on the structure of the derivations instead of
considering the order of the derivation steps.

For example, the above two derivations have the same parse tree:

S

S

)S(

S

)S(

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 5 / 26

Parse Trees
Consider the following CFG for balanced parentheses:

S → ϵ | (S) | SS

There are two different derivations for the sentential form (S)(S):

1 S ⇒L SS ⇒L (S)S ⇒ (S)(S)

2 S ⇒R SS ⇒R S(S) ⇒ (S)(S)

However, parse trees focus on the structure of the derivations instead of
considering the order of the derivation steps.

For example, the above two derivations have the same parse tree:

S

S

)S(

S

)S(

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 5 / 26

Parse Trees

Definition (Parse Trees)
For a given CFG G = (V , Σ, S, R), parse trees are trees satisfying:

1 The root node is labeled with the start variable S.
2 Each internal node is labeled with a variable A ∈ V .

If its children are labeled with:

X1, X2, · · · , Xk

from the left to the right, then A → X1X2 · · · Xk ∈ R.
3 Each leaf node is labeled with a variable, symbol, or ϵ. However, if a

leaf node is labeled with ϵ, it must be the only child of its parent.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 6 / 26

Parse Trees – Example 1: Balanced Parentheses

S → ϵ | (S) | SS

A parse tree for (S)(S):

S

S

)S(

S

)S(

1 S ⇒L S S ⇒L (S)S ⇒ (S)(S)

2 S ⇒R S S ⇒R S(S) ⇒ (S)(S)

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 7 / 26

Parse Trees – Example 2: Even Palindromes

S → ϵ | aSa | bSb

A parse tree for abba:

S

aS

bS

ϵ

b

a

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 8 / 26

Parse Trees – Example 2: Even Palindromes

S → ϵ | aSa | bSb

A parse tree for abba:
S

aS

bS

ϵ

b

a

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 8 / 26

Parse Trees – Example 3: Arithmetic Expressions

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

A parse tree for N*X+N:

S

S

N

+S

S

X

*S

N

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 9 / 26

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

)S(

S

)S(

Its yield is (S)(S).

S

aS

bS

ϵ

b

a

Its yield is abba.

S

S

N

+S

S

X

*S

N

Its yield is N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 10 / 26

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

)S(

S

)S(

Its yield is (S)(S).

S

aS

bS

ϵ

b

a

Its yield is abba.

S

S

N

+S

S

X

*S

N

Its yield is N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 10 / 26

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

)S(

S

)S(

Its yield is (S)(S).

S

aS

bS

ϵ

b

a

Its yield is abba.

S

S

N

+S

S

X

*S

N

Its yield is N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 10 / 26

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

)S(

S

)S(

Its yield is (S)(S).

S

aS

bS

ϵ

b

a

Its yield is abba.

S

S

N

+S

S

X

*S

N

Its yield is N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 10 / 26

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

)S(

S

)S(

Its yield is (S)(S).

S

aS

bS

ϵ

b

a

Its yield is abba.

S

S

N

+S

S

X

*S

N

Its yield is N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 10 / 26

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

)S(

S

)S(

Its yield is (S)(S).

S

aS

bS

ϵ

b

a

Its yield is abba.

S

S

N

+S

S

X

*S

N

Its yield is N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 10 / 26

Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

)S(

S

)S(

Its yield is (S)(S).

S

aS

bS

ϵ

b

a

Its yield is abba.

S

S

N

+S

S

X

*S

N

Its yield is N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 10 / 26

Relationship between Parse Trees and Derivations

Theorem (Parse Trees and Derivations)
For a given CFG G = (V , Σ, S, R), for any sequence α ∈ (V ∪ Σ)∗:

S ⇒∗ α ⇐⇒ ∃ parse tree T . s.t. T yields α

For example, consider the sequence (S)(S):

S ⇒ SS ⇒ (S)S ⇒ (S)(S)

⇕

S

S

)S(

S

)S(

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 11 / 26

Relationship between Parse Trees and Derivations

Theorem (Parse Trees and Derivations)
For a given CFG G = (V , Σ, S, R), for any sequence α ∈ (V ∪ Σ)∗:

S ⇒∗ α ⇐⇒ ∃ parse tree T . s.t. T yields α

For example, consider the sequence (S)(S):

S ⇒ SS ⇒ (S)S ⇒ (S)(S)

⇕

S

S

)S(

S

)S(

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 11 / 26

Contents

1. Parse Trees
Definition
Yields
Relationship between Parse Trees and Derivations

2. Ambiguity
Ambiguous Grammars
Eliminating Ambiguity
Inherent Ambiguity

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 12 / 26

Ambiguous Grammars
Is there always a unique parse tree for a given sentential form?

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, consider the sentential form N*X+N:

S

S

N

+S

S

X

*S

N

S

S

S

N

+S

X

*S

N

Actually, there are two parse trees for N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 13 / 26

Ambiguous Grammars
Is there always a unique parse tree for a given sentential form?

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, consider the sentential form N*X+N:

S

S

N

+S

S

X

*S

N

S

S

S

N

+S

X

*S

N

Actually, there are two parse trees for N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 13 / 26

Ambiguous Grammars
Is there always a unique parse tree for a given sentential form?

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, consider the sentential form N*X+N:

S

S

N

+S

S

X

*S

N

S

S

S

N

+S

X

*S

N

Actually, there are two parse trees for N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 13 / 26

Ambiguous Grammars
Is there always a unique parse tree for a given sentential form?

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, consider the sentential form N*X+N:

S

S

N

+S

S

X

*S

N

S

S

S

N

+S

X

*S

N

Actually, there are two parse trees for N*X+N.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 13 / 26

Ambiguous Grammars

Definition (Ambiguous Grammar)
A context-free grammar G = (V , Σ, S, R) is ambiguous if there exist two
distinct parse trees for a word w ∈ Σ∗. If not, G is unambiguous.

Theorem
Let G = (V , Σ, S, R) be a CFG. Then, the following numbers are equal for
any sequence of variables or symbols w ∈ (V ∪ Σ)∗:

1 The number of parse trees whose yields are w.
2 The number of left-most derivations for w.
3 The number of right-most derivations for w.

Proof) We can convert a left-most (or right-most) derivation for a word
w into the corresponding parse tree for w and vice versa.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 14 / 26

Ambiguous Grammars

Definition (Ambiguous Grammar)
A context-free grammar G = (V , Σ, S, R) is ambiguous if there exist two
distinct parse trees for a word w ∈ Σ∗. If not, G is unambiguous.

Theorem
Let G = (V , Σ, S, R) be a CFG. Then, the following numbers are equal for
any sequence of variables or symbols w ∈ (V ∪ Σ)∗:

1 The number of parse trees whose yields are w.
2 The number of left-most derivations for w.
3 The number of right-most derivations for w.

Proof) We can convert a left-most (or right-most) derivation for a word
w into the corresponding parse tree for w and vice versa.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 14 / 26

Ambiguous Grammars

Definition (Ambiguous Grammar)
A context-free grammar G = (V , Σ, S, R) is ambiguous if there exist two
distinct parse trees for a word w ∈ Σ∗. If not, G is unambiguous.

Theorem
Let G = (V , Σ, S, R) be a CFG. Then, the following numbers are equal for
any sequence of variables or symbols w ∈ (V ∪ Σ)∗:

1 The number of parse trees whose yields are w.
2 The number of left-most derivations for w.
3 The number of right-most derivations for w.

Proof) We can convert a left-most (or right-most) derivation for a word
w into the corresponding parse tree for w and vice versa.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 14 / 26

Ambiguous Grammars – Example
S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

This grammar is ambiguous because there are two parse trees for the
word 2 * x + 1:

S

S

N

D

1

+S

S

X

x

*S

N

D

2

S

S

S

N

D

1

+S

X

x

*S

N

D

2

So, there are two left-most (or right-most) derivations for 2 * x + 1.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 15 / 26

Ambiguous Grammars – Example
S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

This grammar is ambiguous because there are two parse trees for the
word 2 * x + 1:

S

S

N

D

1

+S

S

X

x

*S

N

D

2

S

S

S

N

D

1

+S

X

x

*S

N

D

2

So, there are two left-most (or right-most) derivations for 2 * x + 1.
COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 15 / 26

Ambiguous Grammars – Example

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

There are two left-most derivations for 2 * x + 1:
1 Applying the production rule S → S+S first:

S ⇒L S+S ⇒L S*S+S ⇒L N*S+S ⇒L D*S+S ⇒L 2*S+S
⇒L 2*X+S ⇒L 2*x+S ⇒L 2*x+N ⇒L 2*x+D ⇒L 2*x+1

2 Applying the production rule S → S*S first:

S ⇒L S*S ⇒L N*S ⇒L D*S ⇒L 2*S ⇒L 2*S+S
⇒L 2*X+S ⇒L 2*x+S ⇒L 2*x+N ⇒L 2*x+D ⇒L 2*x+1

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 16 / 26

Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:
S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 17 / 26

Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:
S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 17 / 26

Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:
S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 17 / 26

Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:
S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 17 / 26

Eliminating Ambiguity
Now, the unique parse tree for 2 * x + 1 is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

S

T

F

N

1

+S

T

F

X

x

*T

F

N

2

Let’s try to understand how to eliminate the ambiguity in the original
grammar.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 18 / 26

Eliminating Ambiguity
Now, the unique parse tree for 2 * x + 1 is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

S

T

F

N

1

+S

T

F

X

x

*T

F

N

2

Let’s try to understand how to eliminate the ambiguity in the original
grammar.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 18 / 26

Eliminating Ambiguity
First, analyze why the original grammar is ambiguous.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

• Precedence is not specified between different operators (+ and *).
• For example, two parse trees for 1 * 2 + 3 interpreted as:

1 * (2 + 3) and (1 * 2) + 3

• Let’s give * higher precedence than + to interpret it as (1 * 2) + 3.
• Associativity for the same operator (+ or *).

• For example, two parse trees for 1 + 2 + 3 interpreted as:

1 + (2 + 3) and (1 + 2) + 3

• Let’s give the left-associativity to + to interpret it as (1 + 2) + 3.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 19 / 26

Eliminating Ambiguity
First, analyze why the original grammar is ambiguous.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

• Precedence is not specified between different operators (+ and *).
• For example, two parse trees for 1 * 2 + 3 interpreted as:

1 * (2 + 3) and (1 * 2) + 3

• Let’s give * higher precedence than + to interpret it as (1 * 2) + 3.

• Associativity for the same operator (+ or *).
• For example, two parse trees for 1 + 2 + 3 interpreted as:

1 + (2 + 3) and (1 + 2) + 3

• Let’s give the left-associativity to + to interpret it as (1 + 2) + 3.

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 19 / 26

Eliminating Ambiguity
First, analyze why the original grammar is ambiguous.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

• Precedence is not specified between different operators (+ and *).
• For example, two parse trees for 1 * 2 + 3 interpreted as:

1 * (2 + 3) and (1 * 2) + 3

• Let’s give * higher precedence than + to interpret it as (1 * 2) + 3.
• Associativity for the same operator (+ or *).

• For example, two parse trees for 1 + 2 + 3 interpreted as:

1 + (2 + 3) and (1 + 2) + 3

• Let’s give the left-associativity to + to interpret it as (1 + 2) + 3.
COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 19 / 26

Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F
• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 20 / 26

Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F
• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 20 / 26

Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F

• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 20 / 26

Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F
• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 20 / 26

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

• This grammar supports the left-associativity of + and *. Why?

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 21 / 26

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

• This grammar supports the left-associativity of + and *. Why?

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 21 / 26

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• This grammar supports the left-associativity of + and *. Why?
• S → S+T and T → T*F are left-recursive.

• Then, how to support the right-associativity of + and *?
• Replace the left-recursive rules with right-recursive rules!

S → T | T+S
T → F | F*T
· · ·

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 22 / 26

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• This grammar supports the left-associativity of + and *. Why?
• S → S+T and T → T*F are left-recursive.

• Then, how to support the right-associativity of + and *?

• Replace the left-recursive rules with right-recursive rules!

S → T | T+S
T → F | F*T
· · ·

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 22 / 26

Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• This grammar supports the left-associativity of + and *. Why?
• S → S+T and T → T*F are left-recursive.

• Then, how to support the right-associativity of + and *?
• Replace the left-recursive rules with right-recursive rules!

S → T | T+S
T → F | F*T
· · ·

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 22 / 26

Inherent Ambiguity
So far, we have discussed the ambiguity for grammars.
We will now discuss the inherent ambiguity for languages.

Definition (Inherent Ambiguity)
A language L is inherently ambiguous if all CFGs whose languages are L
are ambiguous. (i.e. there is no unambiguous grammar for L)

For example, the following language is inherently ambiguous:

L = {aibjck | i , j , k ≥ 0 ∧ (i = j ∨ j = k)}

An example of ambiguous grammar for L is:

S → L | R L → X | Lc
X → ϵ | aXb

R → Y | aR
Y → ϵ | bY c

While we can prove that L is inherently ambiguous using the Ogden’s
lemma1, we will not discuss it in this course.

1https://en.wikipedia.org/wiki/Ogden’s_lemma
COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 23 / 26

https://en.wikipedia.org/wiki/Ogden's_lemma

Inherent Ambiguity
So far, we have discussed the ambiguity for grammars.
We will now discuss the inherent ambiguity for languages.

Definition (Inherent Ambiguity)
A language L is inherently ambiguous if all CFGs whose languages are L
are ambiguous. (i.e. there is no unambiguous grammar for L)

For example, the following language is inherently ambiguous:

L = {aibjck | i , j , k ≥ 0 ∧ (i = j ∨ j = k)}

An example of ambiguous grammar for L is:

S → L | R L → X | Lc
X → ϵ | aXb

R → Y | aR
Y → ϵ | bY c

While we can prove that L is inherently ambiguous using the Ogden’s
lemma1, we will not discuss it in this course.

1https://en.wikipedia.org/wiki/Ogden’s_lemma
COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 23 / 26

https://en.wikipedia.org/wiki/Ogden's_lemma

Inherent Ambiguity
So far, we have discussed the ambiguity for grammars.
We will now discuss the inherent ambiguity for languages.

Definition (Inherent Ambiguity)
A language L is inherently ambiguous if all CFGs whose languages are L
are ambiguous. (i.e. there is no unambiguous grammar for L)

For example, the following language is inherently ambiguous:

L = {aibjck | i , j , k ≥ 0 ∧ (i = j ∨ j = k)}

An example of ambiguous grammar for L is:

S → L | R L → X | Lc
X → ϵ | aXb

R → Y | aR
Y → ϵ | bY c

While we can prove that L is inherently ambiguous using the Ogden’s
lemma1, we will not discuss it in this course.

1https://en.wikipedia.org/wiki/Ogden’s_lemma
COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 23 / 26

https://en.wikipedia.org/wiki/Ogden's_lemma

Inherent Ambiguity
So far, we have discussed the ambiguity for grammars.
We will now discuss the inherent ambiguity for languages.

Definition (Inherent Ambiguity)
A language L is inherently ambiguous if all CFGs whose languages are L
are ambiguous. (i.e. there is no unambiguous grammar for L)

For example, the following language is inherently ambiguous:

L = {aibjck | i , j , k ≥ 0 ∧ (i = j ∨ j = k)}

An example of ambiguous grammar for L is:

S → L | R L → X | Lc
X → ϵ | aXb

R → Y | aR
Y → ϵ | bY c

While we can prove that L is inherently ambiguous using the Ogden’s
lemma1, we will not discuss it in this course.

1https://en.wikipedia.org/wiki/Ogden’s_lemma
COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 23 / 26

https://en.wikipedia.org/wiki/Ogden's_lemma

Summary
1. Parse Trees

Definition
Yields
Relationship between Parse Trees and Derivations

2. Ambiguity
Ambiguous Grammars
Eliminating Ambiguity
Inherent Ambiguity

<latexit sha1_base64="n92EN7qKro3HBPjOFkdf9pTRcuY=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARqosyI0VdFt24rGgf0BlKJs20oUlmSDJCGWfhr7hxoYhbf8Odf2PazkJbDwQO59zLPTlBzKjSjvNtFZaWV1bXiuuljc2t7R17d6+lokRi0sQRi2QnQIowKkhTU81IJ5YE8YCRdjC6nvjtByIVjcS9HsfE52ggaEgx0kbq2QceR3qIEUsbWSX17uiAo9PspGeXnaozBVwkbk7KIEejZ395/QgnnAiNGVKq6zqx9lMkNcWMZCUvUSRGeIQGpGuoQJwoP53mz+CxUfowjKR5QsOp+nsjRVypMQ/M5CStmvcm4n9eN9HhpZ9SESeaCDw7FCYM6ghOyoB9KgnWbGwIwpKarBAPkURYm8pKpgR3/suLpHVWdc+rtdtauX6V11EEh+AIVIALLkAd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/AI22lc4=</latexit>P(⌃⇤)

<latexit sha1_base64="/zCSF5YzKE75PzK8Z+pFFvsDV74=">AAACAnicbVDLSgNBEJz1GeNr1ZN4GQyCp7ArQT0GvXiMYB6QxDA76SRDZmeXmV4xLMGLv+LFgyJe/Qpv/o2Th6CJBQPVVd30dAWxFAY978tZWFxaXlnNrGXXNza3tt2d3YqJEs2hzCMZ6VrADEihoIwCJdRiDSwMJFSD/uXIr96BNiJSNziIoRmyrhIdwRlaqeXuNxDuETFlw1tFf4rAFi035+W9Meg88ackR6YotdzPRjviSQgKuWTG1H0vxmbKNAouYZhtJAZixvusC3VLFQvBNNPxCUN6ZJU27UTaPoV0rP6eSFlozCAMbGfIsGdmvZH4n1dPsHPeTIWKEwTFJ4s6iaQY0VEetC00cJQDSxjXwv6V8h7TjKNNLWtD8GdPnieVk7x/mi9cF3LFi2kcGXJADskx8ckZKZIrUiJlwskDeSIv5NV5dJ6dN+d90rrgTGf2yB84H9+H45gr</latexit>

anbn

<latexit sha1_base64="9tQw7V57vUA3ZdVPVKWNm/piBjo=">AAAB83icbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx68RjBPCC7htlJJxkyO7vM9IphyW948aCIV3/Gm3/jJNmDJhY0FFXddHeFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatkBmQQkEdBUpoJRpYFEpohsObid98BG1ErO5xlEAQsb4SPcEZWsn3EZ4QMWPjB9Upld2KOwVdJF5OyiRHrVP68rsxTyNQyCUzpu25CQYZ0yi4hHHRTw0kjA9ZH9qWKhaBCbLpzWN6bJUu7cXalkI6VX9PZCwyZhSFtjNiODDz3kT8z2un2LsKMqGSFEHx2aJeKinGdBIA7QoNHOXIEsa1sLdSPmCacbQxFW0I3vzLi6RxWvEuKud3Z+XqdR5HgRySI3JCPHJJquSW1EidcJKQZ/JK3pzUeXHenY9Z65KTzxyQP3A+fwDAapIq</latexit>

an

<latexit sha1_base64="IzhZiHIq8VyVGAmL3vnQ9xvNIgY=">AAACOHicbVBJSwMxGM3UvW5Vj16CRfBUZsTt6HJREBewC3RKyaRfp8FMMmQRy9Cf5cWf4U28eFDEq7/AtM7B7UHg8d635HtRypk2vv/oFcbGJyanpmeKs3PzC4ulpeWallZRqFLJpWpERANnAqqGGQ6NVAFJIg716Ppo6NdvQGkmxZXpp9BKSCxYl1FinNQunYcRxExkRCnSH2R0UAwN3JrsTAp8InqgQBjeH4Rhrh8kEYuttBqfEhFbEoN2LSA6+YR2qexX/BHwXxLkpIxyXLRLD2FHUpu4PZQTrZuBn5qWm2YY5eBmWw0podduU9NRQRLQrWx0+ACvO6WDu1K5Jwweqd87MpJo3U8iV5kQ09O/vaH4n9e0prvXyphIrQFBvxZ1LcdG4mGKuMMUUBeMI4Qq5v6KaY8oQo3LuuhCCH6f/JfUNivBTmX7cqu8f5jHMY1W0RraQAHaRfvoGF2gKqLoDj2hF/Tq3XvP3pv3/lVa8PKeFfQD3scnUMOvIA==</latexit>

Non Inherently
Ambiguous Languages

<latexit sha1_base64="sncdSnV/pHklkSFDDpVmmXpNVK8=">AAACRHicbVBNTxsxEPVSykfa0gBHLlajSvRAtIsocIRyoEeQGkDKRtGsM7ux4rVX9iwiWuXHcekP6K2/oBcOoKrXCifsga+RLD29N29m/JJCSUdh+DuYezP/dmFxabnx7v2HlY/N1bUzZ0orsCOMMvYiAYdKauyQJIUXhUXIE4Xnyehoqp9fonXS6B80LrCXQ6ZlKgWQp/rNbqwwpc04wUzqCqyF8aQSk0ZMeEXVIW0pBEdbRuMkjmu2o/18mZWmdPzYQp6Ddd6BelAPiK3MhvSl32yF7XBW/CWIatBidZ30m7/igRFljpqEAue6UVhQzw8lKRT6FaXDAsQIMux66M9A16tmIUz4Z88MeGqsf5r4jH3sqCB3bpwnvjMHGrrn2pR8TeuWlO73KqmLklCLh0VpqTgZPk2UD6RFQWrsAQgr/a1cDMGCIJ97w4cQPf/yS3C23Y52219Pd1oH3+o4ltgG+8Q2WcT22AH7zk5Yhwl2zf6wW3YX/Axugr/Bv4fWuaD2rLMnFfy/ByDis+0=</latexit>✓
At-least-one

Unambiguous Grammars

◆

<latexit sha1_base64="zQ/XgY2Rtxi2pP/K9kCqgK4U2rE=">AAAB7HicbVBNTwIxEJ3iF+IX6tFLIzHxRHaNX0eiF49oXCCBlXRLFxq63U3blZANv8GLB43x6g/y5r+xwB4UfckkL+/NZGZekAiujeN8ocLS8srqWnG9tLG5tb1T3t1r6DhVlHk0FrFqBUQzwSXzDDeCtRLFSBQI1gyG11O/+ciU5rG8N+OE+RHpSx5ySoyVvBEePdx1yxWn6syA/xI3JxXIUe+WPzu9mKYRk4YKonXbdRLjZ0QZTgWblDqpZgmhQ9JnbUsliZj2s9mxE3xklR4OY2VLGjxTf05kJNJ6HAW2MyJmoBe9qfif105NeOlnXCapYZLOF4WpwCbG089xjytGjRhbQqji9lZMB0QRamw+JRuCu/jyX9I4qbrn1bPb00rtKo+jCAdwCMfgwgXU4Abq4AEFDk/wAq9Iomf0ht7nrQWUz+zDL6CPb27ijnQ=</latexit>

wwR

<latexit sha1_base64="SBFzntk1dr+WaqMGrfHfvaEUUgk=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17FYEA8eKtgPbEPZbCft0s0m7E7EEvovvHhQxKv/xpv/xm2bg7Y+GHi8N8PMPD8WXKPjfFu5peWV1bX8emFjc2t7p7i719BRohjUWSQi1fKpBsEl1JGjgFasgIa+gKY/rE785iMozSN5j6MYvJD2JQ84o2ikhw7CE6bV69txt1hyys4U9iJxM1IiGWrd4lenF7EkBIlMUK3brhOjl1KFnAkYFzqJhpiyIe1D21BJQ9BeOr14bB8ZpWcHkTIl0Z6qvydSGmo9Cn3TGVIc6HlvIv7ntRMMLr2UyzhBkGy2KEiEjZE9ed/ucQUMxcgQyhQ3t9psQBVlaEIqmBDc+ZcXSeOk7J6Xz+5OS5WrLI48OSCH5Ji45IJUyA2pkTphRJJn8kreLG29WO/Wx6w1Z2Uz++QPrM8fh0aQ1g==</latexit>

CFL

<latexit sha1_base64="1VCgF0mxBR9vvM8wVZmEyHDi1kI=">AAAB8HicbVDJSgNBEK2JW4xb1KOXwSB4CjPidgx68eAhilkkGUJPpydp0t0zdNeIYchXePGgiFc/x5t/Y2c5aPRBweO9KqrqhYngBj3vy8ktLC4tr+RXC2vrG5tbxe2duolTTVmNxiLWzZAYJrhiNeQoWDPRjMhQsEY4uBz7jQemDY/VHQ4TFkjSUzzilKCV7tvIHjG7vR51iiWv7E3g/iX+jJRghmqn+NnuxjSVTCEVxJiW7yUYZEQjp4KNCu3UsITQAemxlqWKSGaCbHLwyD2wSteNYm1LoTtRf05kRBozlKHtlAT7Zt4bi/95rRSj8yDjKkmRKTpdFKXCxdgdf+92uWYUxdASQjW3t7q0TzShaDMq2BD8+Zf/kvpR2T8tn9wclyoXszjysAf7cAg+nEEFrqAKNaAg4Qle4NXRzrPz5rxPW3PObGYXfsH5+AYLqZCV</latexit>

RL

<latexit sha1_base64="sqagNxgbfPSW/LV5EOgP1KcdBs0=">AAACP3icbZA7T8MwEMcd3oRXgZHFokKCpUoQrwUJwcIIEi1ITVs57rWYOk5kXxBVlG/GwldgY2VhACFWNtwSJF4nWf7pf77z3T9MpDDoeQ/OyOjY+MTk1LQ7Mzs3v1BaXKqZONUcqjyWsb4ImQEpFFRRoISLRAOLQgnnYe9okD+/Bm1ErM6wn0AjYl0lOoIztFKrVAtC6AqVMa1ZP8947gYIN4iYsbwpvjjMm1dfzPNmLwjcdUH36RUNrgHstU97G24Aql00apXKXsUbBv0LfgFlUsRJq3QftGOeRqCQS2ZM3fcSbNhuKLgEO1VqIGG8x7pQt6hYBKaRDffP6ZpV2rQTa3sU0qH6vSJjkTH9KLQvI4aX5nduIP6Xq6fY2WtkQiUpguKfH3VSSTGmAzNpW2jgKPsWGNfCzkr5JdOMo7XctSb4v1f+C7XNir9T2T7dKh8cFnZMkRWyStaJT3bJATkmJ6RKOLklj+SZvDh3zpPz6rx9Ph1xippl8iOc9w874bC0</latexit>

aibjck

(i = j _ j = k)

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 24 / 26

Midterm Exam
• The midterm exam will be given in class.
• Date: 13:30-14:45 (1 hour 15 minutes), April 23 (Wed.).
• Location: 301, Aegineung (애기능생활관 301호)
• Coverage: Lectures 1 – 13
• Format: 7–9 questions with closed book and closed notes

• Filling blanks in some tables, sentences, or expressions.
• Construction of automata or grammars for given languages.
• Proofs of given statements related to languages and automata.
• Yes/No questions about concepts in the theory of computation.
• etc.

• Note that there is no class on April 28 (Mon.).
• Please refer to the previous exams in the course website:

https://plrg.korea.ac.kr/courses/cose215/

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 25 / 26

https://plrg.korea.ac.kr/courses/cose215/

Next Lecture
• Pushdown Automata (PDA)

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 26 / 26

https://plrg.korea.ac.kr

	Parse Trees
	Definition
	Yields
	Relationship between Parse Trees and Derivations

	Ambiguity
	Ambiguous Grammars
	Eliminating Ambiguity
	Inherent Ambiguity

