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Recall
• A context-free grammar (CFG):

G = (V , Σ, S, R)

• The language of a CFG G :

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

• A language L is a context-free language (CFL):

∃ CFG G . L(G) = L

• For a given word w ∈ L(G), a derivation for w is S ⇒∗ w
• A sequence α ∈ (V ∪ Σ)∗ is a sentential form if S ⇒∗ α.
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Parse Trees
Consider the following CFG for balanced parentheses:

S → ϵ | (S) | SS

There are two different derivations for the sentential form (S)(S):

1 S ⇒L SS ⇒L (S)S ⇒ (S)(S)

2 S ⇒R SS ⇒R S(S) ⇒ (S)(S)

However, parse trees focus on the structure of the derivations instead of
considering the order of the derivation steps.

For example, the above two derivations have the same parse tree:
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Parse Trees

Definition (Parse Trees)
For a given CFG G = (V , Σ, S, R), parse trees are trees satisfying:

1 The root node is labeled with the start variable S.
2 Each internal node is labeled with a variable A ∈ V .

If its children are labeled with:

X1, X2, · · · , Xk

from the left to the right, then A → X1X2 · · · Xk ∈ R.
3 Each leaf node is labeled with a variable, symbol, or ϵ. However, if a

leaf node is labeled with ϵ, it must be the only child of its parent.
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Parse Trees – Example 1: Balanced Parentheses

S → ϵ | (S) | SS

A parse tree for (S)(S):

S

S

)S(

S

)S(

1 S ⇒L S S ⇒L (S)S ⇒ (S)(S)

2 S ⇒R S S ⇒R S(S) ⇒ (S)(S)
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Parse Trees – Example 2: Even Palindromes

S → ϵ | aSa | bSb

A parse tree for abba:

S

aS

bS

ϵ

b

a

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 8 / 26



Parse Trees – Example 2: Even Palindromes

S → ϵ | aSa | bSb

A parse tree for abba:
S

aS

bS

ϵ

b

a

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 8 / 26



Parse Trees – Example 3: Arithmetic Expressions

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

A parse tree for N*X+N:

S

S

N
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S
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N
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Yields

Definition (Yields)
The sequence obtained by concatenating the labels (without ϵ) of the leaf
nodes of a parse tree from left to right is called the yield of the parse tree.

S

S

)S(

S

)S(

Its yield is (S)(S).

S

aS

bS

ϵ

b

a

Its yield is abba.

S

S

N

+S

S

X

*S

N

Its yield is N*X+N.
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Relationship between Parse Trees and Derivations

Theorem (Parse Trees and Derivations)
For a given CFG G = (V , Σ, S, R), for any sequence α ∈ (V ∪ Σ)∗:

S ⇒∗ α ⇐⇒ ∃ parse tree T . s.t. T yields α

For example, consider the sequence (S)(S):

S ⇒ SS ⇒ (S)S ⇒ (S)(S)

⇕

S

S

)S(

S

)S(
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Ambiguous Grammars
Is there always a unique parse tree for a given sentential form?

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, consider the sentential form N*X+N:

S

S

N

+S

S

X

*S

N

S

S

S

N

+S

X

*S

N

Actually, there are two parse trees for N*X+N.
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Ambiguous Grammars

Definition (Ambiguous Grammar)
A context-free grammar G = (V , Σ, S, R) is ambiguous if there exist two
distinct parse trees for a word w ∈ Σ∗. If not, G is unambiguous.

Theorem
Let G = (V , Σ, S, R) be a CFG. Then, the following numbers are equal for
any sequence of variables or symbols w ∈ (V ∪ Σ)∗:

1 The number of parse trees whose yields are w.
2 The number of left-most derivations for w.
3 The number of right-most derivations for w.

Proof) We can convert a left-most (or right-most) derivation for a word
w into the corresponding parse tree for w and vice versa.
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Ambiguous Grammars – Example
S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

This grammar is ambiguous because there are two parse trees for the
word 2 * x + 1:

S

S

N
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1

+S

S

X

x

*S

N

D

2

S

S

S

N

D
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x

*S

N

D

2

So, there are two left-most (or right-most) derivations for 2 * x + 1.
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Ambiguous Grammars – Example

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

There are two left-most derivations for 2 * x + 1:
1 Applying the production rule S → S+S first:

S ⇒L S+S ⇒L S*S+S ⇒L N*S+S ⇒L D*S+S ⇒L 2*S+S
⇒L 2*X+S ⇒L 2*x+S ⇒L 2*x+N ⇒L 2*x+D ⇒L 2*x+1

2 Applying the production rule S → S*S first:

S ⇒L S*S ⇒L N*S ⇒L D*S ⇒L 2*S ⇒L 2*S+S
⇒L 2*X+S ⇒L 2*x+S ⇒L 2*x+N ⇒L 2*x+D ⇒L 2*x+1
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Eliminating Ambiguity
Unfortunately,

• There is NO general algorithm to remove ambiguity from a CFG.
• There is even NO algorithm to determine a CFG is ambiguous.

Fortunately, there are well-known techniques to manually eliminate the
ambiguity in a given grammar commonly used in programming languages.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

For example, an equivalent but unambiguous grammar is:
S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z
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Eliminating Ambiguity
Now, the unique parse tree for 2 * x + 1 is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

S

T

F

N

1

+S

T

F

X

x

*T

F

N

2

Let’s try to understand how to eliminate the ambiguity in the original
grammar.
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Eliminating Ambiguity
First, analyze why the original grammar is ambiguous.

S → N | X | S+S | S*S | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

• Precedence is not specified between different operators (+ and *).
• For example, two parse trees for 1 * 2 + 3 interpreted as:

1 * (2 + 3) and (1 * 2) + 3

• Let’s give * higher precedence than + to interpret it as (1 * 2) + 3.
• Associativity for the same operator (+ or *).

• For example, two parse trees for 1 + 2 + 3 interpreted as:

1 + (2 + 3) and (1 + 2) + 3

• Let’s give the left-associativity to + to interpret it as (1 + 2) + 3.
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Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F
• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T
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In the grammar, S is defined as:

S → T | S+T

COSE215 @ Korea University Lecture 13 – Parse Trees and Ambiguity April 21, 2025 20 / 26



Eliminating Ambiguity – Precedence
To enforce the precedence, define new variables F for factors and T for terms:

• A factor is a number, a variable, or a parenthesized expression:

42, x, (1 + 2), · · ·

In the grammar, F is defined as:

F → N | X | (S)

• A term is the multiplication of one or more factors:

42, 2 * x, 2 * (1 + 2), 1 * (x * y) * z, · · ·

In the grammar, T is defined as:

T → F | T*F
• An expression is the addition of one or more terms:

42, 1 + 2, 1 + 2 * 3, (1 + 2) * 3 + 4), · · ·

In the grammar, S is defined as:

S → T | S+T
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Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → D | DN
D → 0 | · · · | 9
X → a | · · · | z

• This grammar supports the left-associativity of + and *. Why?
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Eliminating Ambiguity – Associativity
The unambiguous grammar is:

S → T | S+T
T → F | T*F
F → N | X | (S)
N → 0 | · · · | 9 | 0N | · · · | 9N
X → a | · · · | z

• This grammar supports the left-associativity of + and *. Why?
• S → S+T and T → T*F are left-recursive.

• Then, how to support the right-associativity of + and *?
• Replace the left-recursive rules with right-recursive rules!

S → T | T+S
T → F | F*T
· · ·
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Inherent Ambiguity
So far, we have discussed the ambiguity for grammars.
We will now discuss the inherent ambiguity for languages.

Definition (Inherent Ambiguity)
A language L is inherently ambiguous if all CFGs whose languages are L
are ambiguous. (i.e. there is no unambiguous grammar for L)

For example, the following language is inherently ambiguous:

L = {aibjck | i , j , k ≥ 0 ∧ (i = j ∨ j = k)}

An example of ambiguous grammar for L is:

S → L | R L → X | Lc
X → ϵ | aXb

R → Y | aR
Y → ϵ | bY c

While we can prove that L is inherently ambiguous using the Ogden’s
lemma1, we will not discuss it in this course.

1https://en.wikipedia.org/wiki/Ogden’s_lemma
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(i = j _ j = k)
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Midterm Exam
• The midterm exam will be given in class.
• Date: 13:30-14:45 (1 hour 15 minutes), April 23 (Wed.).
• Location: 301, Aegineung (애기능생활관 301호)
• Coverage: Lectures 1 – 13
• Format: 7–9 questions with closed book and closed notes

• Filling blanks in some tables, sentences, or expressions.
• Construction of automata or grammars for given languages.
• Proofs of given statements related to languages and automata.
• Yes/No questions about concepts in the theory of computation.
• etc.

• Note that there is no class on April 28 (Mon.).
• Please refer to the previous exams in the course website:

https://plrg.korea.ac.kr/courses/cose215/
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Next Lecture
• Pushdown Automata (PDA)

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr
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