
Lecture 6 – Regular Expressions and Languages
COSE215: Theory of Computation

Jihyeok Park

2025 Spring

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 1 / 21

Recall

<latexit sha1_base64="54UZt6j5pS5xz/B1Y4GxQxIAlZk=">AAAB8XicbVDJSgNBEO2JW4xb1KOXwSB4CjPidowL4jGCWTAZQk+nJmnS0zN014hhyF948aCIV//Gm39jJ5mDJj4oeLxXRVU9PxZco+N8W7mFxaXllfxqYW19Y3OruL1T11GiGNRYJCLV9KkGwSXUkKOAZqyAhr6Ahj+4GvuNR1CaR/IehzF4Ie1JHnBG0UgPbYQnTK9vLkadYskpOxPY88TNSIlkqHaKX+1uxJIQJDJBtW65ToxeShVyJmBUaCcaYsoGtActQyUNQXvp5OKRfWCUrh1EypREe6L+nkhpqPUw9E1nSLGvZ72x+J/XSjA491Iu4wRBsumiIBE2Rvb4fbvLFTAUQ0MoU9zcarM+VZShCalgQnBnX54n9aOye1o+uTsuVS6zOPJkj+yTQ+KSM1Iht6RKaoQRSZ7JK3mztPVivVsf09aclc3skj+wPn8AeBaQzA==</latexit>

DFA

<latexit sha1_base64="eyvEj5fTRTWjLByz0l5ELsilBUI=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17EqiCepYD+wDWWznbRLN5uwOxFL6L/w4kERr/4bb/4bt20O2vpg4PHeDDPz/FhwjY7zbeUWFpeWV/KrhbX1jc2t4vZOXUeJYlBjkYhU06caBJdQQ44CmrECGvoCGv7gauw3HkFpHsl7HMbghbQnecAZRSM9tBGeML29vhh1iiWn7ExgzxM3IyWSodopfrW7EUtCkMgE1brlOjF6KVXImYBRoZ1oiCkb0B60DJU0BO2lk4tH9oFRunYQKVMS7Yn6eyKlodbD0DedIcW+nvXG4n9eK8Hg3Eu5jBMEyaaLgkTYGNnj9+0uV8BQDA2hTHFzq836VFGGJqSCCcGdfXme1I/K7mn55O64VLnM4siTPbJPDolLzkiF3JAqqRFGJHkmr+TN0taL9W59TFtzVjazS/7A+vwBh1yQ1g==</latexit>

NFA
<latexit sha1_base64="4cSHh/b3ZimxiTZ5Jn+lq6G84q0=">AAAB/HicbVDJSgNBEO2JW4xbNEcvg0HwYpgRt2NUEE8SwSyQGUJPp5I06ekZumvEMMRf8eJBEa9+iDf/xs5y0MQHBY/3qqiqF8SCa3ScbyuzsLi0vJJdza2tb2xu5bd3ajpKFIMqi0SkGgHVILiEKnIU0IgV0DAQUA/6VyO//gBK80je4yAGP6RdyTucUTRSK1/wINZcRNJDeMT08Pb6YtjKF52SM4Y9T9wpKZIpKq38l9eOWBKCRCao1k3XidFPqULOBAxzXqIhpqxPu9A0VNIQtJ+Ojx/a+0Zp251ImZJoj9XfEykNtR6EgekMKfb0rDcS//OaCXbO/ZTLOEGQbLKokwgbI3uUhN3mChiKgSGUKW5utVmPKsrQ5JUzIbizL8+T2lHJPS2d3B0Xy5fTOLJkl+yRA+KSM1ImN6RCqoSRAXkmr+TNerJerHfrY9KasaYzBfIH1ucP0tKU5A==</latexit>

✏-NFA

(Lecture 3)

(Lecture 4) (Lecture 5)

: Subset Construction

<latexit sha1_base64="/zCSF5YzKE75PzK8Z+pFFvsDV74=">AAACAnicbVDLSgNBEJz1GeNr1ZN4GQyCp7ArQT0GvXiMYB6QxDA76SRDZmeXmV4xLMGLv+LFgyJe/Qpv/o2Th6CJBQPVVd30dAWxFAY978tZWFxaXlnNrGXXNza3tt2d3YqJEs2hzCMZ6VrADEihoIwCJdRiDSwMJFSD/uXIr96BNiJSNziIoRmyrhIdwRlaqeXuNxDuETFlw1tFf4rAFi035+W9Meg88ackR6YotdzPRjviSQgKuWTG1H0vxmbKNAouYZhtJAZixvusC3VLFQvBNNPxCUN6ZJU27UTaPoV0rP6eSFlozCAMbGfIsGdmvZH4n1dPsHPeTIWKEwTFJ4s6iaQY0VEetC00cJQDSxjXwv6V8h7TjKNNLWtD8GdPnieVk7x/mi9cF3LFi2kcGXJADskx8ckZKZIrUiJlwskDeSIv5NV5dJ6dN+d90rrgTGf2yB84H9+H45gr</latexit>

anbn

<latexit sha1_base64="FfGvy2Bl9BlkuPdjQXa1mWGKkP0=">AAACBnicbVDLSgMxFM3UV62vUZciBItQN2VGiroR6gNxIVLBPqAtJZOmbWjmQXJHLENXbvwVNy4Uces3uPNvzLQjaOuBwLnn3MvNPU4guALL+jJSM7Nz8wvpxczS8srqmrm+UVF+KCkrU1/4suYQxQT3WBk4CFYLJCOuI1jV6Z/FfvWOScV97xYGAWu6pOvxDqcEtNQyt69yDWD3EJ1fnAz38DH+qa/jumVmrbw1Ap4mdkKyKEGpZX422j4NXeYBFUSpum0F0IyIBE4FG2YaoWIBoX3SZXVNPeIy1YxGZwzxrlbauONL/TzAI/X3RERcpQauoztdAj016cXif149hM5RM+JeEALz6HhRJxQYfBxngttcMgpioAmhkuu/YtojklDQyWV0CPbkydOksp+3D/KFm0K2eJrEkUZbaAflkI0OURFdohIqI4oe0BN6Qa/Go/FsvBnv49aUkcxsoj8wPr4BsymXXw==</latexit>

L(DFA) = L(NFA)

<latexit sha1_base64="t3AFnXOnd4TRIQ1cdPhmks19jx4=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokUtRl0Y3LCvYBbSyT6aQdOpmEmRuxhGz8FTcuFHHrZ7jzb5y2EbT1wIUz59zL3Hv8WHANjvNlFZaWV1bXiuuljc2t7R17d6+po0RR1qCRiFTbJ5oJLlkDOAjWjhUjoS9Yyx9dTfzWPVOaR/IWxjHzQjKQPOCUgJF69kEX2AMApCS7k/jn4Wc9u+xUnCnwInFzUkY56j37s9uPaBIyCVQQrTuuE4OXEgWcCpaVuolmMaEjMmAdQyUJmfbS6QEZPjZKHweRMiUBT9XfEykJtR6HvukMCQz1vDcR//M6CQQXXsplnACTdPZRkAgMEZ6kgftcMQpibAihiptdMR0SRSiYzEomBHf+5EXSPK24Z5XqTbVcu8zjKKJDdIROkIvOUQ1dozpqIIoy9IRe0Kv1aD1bb9b7rLVg5TP76A+sj2/0dZdL</latexit>

anb

<latexit sha1_base64="GYtzptKTolIxAeYLkDREUwkwl5Q=">AAACHXicbVDLSgMxFM34tr6qLt0Ei1A3ZUaLuiy6cSUK1hY6pWQyt20w8zC501qG+RE3/oobF4q4cCP+jWntQlsPJBzOuZfkHC+WQqNtf1kzs3PzC4tLy7mV1bX1jfzm1o2OEsWhyiMZqbrHNEgRQhUFSqjHCljgSah5t2dDv9YDpUUUXuMghmbAOqFoC87QSK182U1pn7qB8M3FsOt56UVW7O9TF+4S0aM2dRHuMaXFIPJpRg+Nk7XyBbtkj0CniTMmBTLGZSv/4foRTwIIkUumdcOxY2ymTKHgErKcm2iIGb9lHWgYGrIAdDMdpcvonlF82o6UOSHSkfp7I2WB1oPAM5PDBHrSG4r/eY0E2yfNVIRxghDyn4faiaQY0WFV1BcKOMqBIYwrYf5KeZcpxtEUmjMlOJORp8nNQck5KpWvyoXK6biOJbJDdkmROOSYVMg5uSRVwskDeSIv5NV6tJ6tN+v9Z3TGGu9skz+wPr8BQSugJA==</latexit>{w | N(w) ⌘ 0 (mod 3)}

<latexit sha1_base64="Q9FEOIzPBFaGuNUWo3qf90+LtJw=">AAACAXicbVDLSgNBEJz1GeMr6kXwMhgEPRh2xddFiAriQSSCUSEbwuykEwdnZ5eZXjEs8eKvePGgiFf/wpt/4yTZg6+ChqKqm+6uIJbCoOt+OkPDI6Nj47mJ/OTU9MxsYW7+wkSJ5lDlkYz0VcAMSKGgigIlXMUaWBhIuAxuDnv+5S1oIyJ1jp0Y6iFrK9ESnKGVGoXFPXqy6kNshIyUj3CH6frp0X53rVEouiW3D/qXeBkpkgyVRuHDb0Y8CUEhl8yYmufGWE+ZRsEldPN+YiBm/Ia1oWapYiGYetr/oEtXrNKkrUjbUkj76veJlIXGdMLAdoYMr81vryf+59USbO3WU6HiBEHxwaJWIilGtBcHbQoNHGXHEsa1sLdSfs0042hDy9sQvN8v/yUXGyVvu7R1tlksH2Rx5MgSWSarxCM7pEyOSYVUCSf35JE8kxfnwXlyXp23QeuQk80skB9w3r8AIMaWEA==</latexit>

= L(✏-NFA)

<latexit sha1_base64="VqgtJZCfw/TH3r+ZNEVqNMu2PjM=">AAACJnicbVC7SgNBFJ2Nrxhfq2JlsxiEaBF2RaJl0MYyonlAEsPdySQZMrO7zNwV4pKPsRP9FzsRO7/DysmjMIkHBg7n3NccPxJco+t+Waml5ZXVtfR6ZmNza3vH3t2r6DBWlJVpKEJV80EzwQNWRo6C1SLFQPqCVf3+9civPjKleRjc4yBiTQndgHc4BTRSyz5oSMAeBZGUhrnGHe9KeDg9adlZN++O4SwSb0qyZIpSy/5ptEMaSxYgFaB13XMjbCagkFPBhplGrFkEtA9dVjc0AMl0MxmfP3SOjdJ2OqEyL0BnrP7tSEBqPZC+qRwdq+e9kfivp1GCGqj23H7sXDYTHkQxsoBO1ndi4WDojBJy2lwximJgCFDFzQ8c2gMFFE2OM/OR95+GGROWNx/NIqmc5b1CvnB7ni1eTWNLk0NyRHLEIxekSG5IiZQJJQl5Jq/kzXqx3q0P63NSmrKmPftkBtb3L7jnpkI=</latexit>P(⌃⇤)

<latexit sha1_base64="Zfh3tk4CZbvw/QaJs3y5dWL+59U=">AAACG3icbVC7TsNAEDyHVwivACWNRYREFdkIBcoIGsogkYcUW9H6cklOOZ+tuzVgrPwGHYJ/oUO0FPwKFZdHQRJGWmk0s3t7O0EsuEbH+bZyK6tr6xv5zcLW9s7uXnH/oKGjRFFWp5GIVCsAzQSXrI4cBWvFikEYCNYMhtdjv3nPlOaRvMM0Zn4Ifcl7nAIayXvwkD0iYgYw6hRLTtmZwF4m7oyUyAy1TvHH60Y0CZlEKkDrtuvE6GegkFPBRgUv0SwGOoQ+axsqIWTazyZ/HtknRunavUiZkmhP1L8TGYRap2FgOkPAgV70xuK/nsYQVKq6C/uxd+lnXMYJMkmn63uJsDGyx7HYXa4YRZEaAlRxc4FNB6CAoglv7n3kw6dRwYTlLkazTBpnZbdSrtyel6pXs9jy5Igck1PikgtSJTekRuqEkpg8k1fyZr1Y79aH9TltzVmzmUMyB+vrF65wo00=</latexit>waa

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 2 / 21

Contents

1. Regular Expressions
Recall: Operations in Languages
Definition
Precedence Order
Language of Regular Expressions
Extended Regular Expressions
Examples

2. Regular Expressions in Practice

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 3 / 21

Contents

1. Regular Expressions
Recall: Operations in Languages
Definition
Precedence Order
Language of Regular Expressions
Extended Regular Expressions
Examples

2. Regular Expressions in Practice

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 4 / 21

Recall: Operations in Languages
We already learned the following operations on languages:

• Union of languages: L1 ∪ L2
• Concatenation of languages: L1L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}
• Kleene star of a language: L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =

⋃
n≥0 Ln

For example, consider the following languages over symbols Σ = {a, b}:

L1 = {an | n ≥ 1} L2 = {bn | n ≥ 1}

L1 ∪ L2 = {an or bn | n ≥ 1}

L1L2 = {anbm | n, m ≥ 1} ̸= {anbn | n ≥ 1}

L∗
1 = {an | n ≥ 0} ≠ {an | n ≥ 1}

Regular expressions (REs) provide a new way to define languages with
above operations without using finite automata!

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 5 / 21

Recall: Operations in Languages
We already learned the following operations on languages:

• Union of languages: L1 ∪ L2
• Concatenation of languages: L1L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}
• Kleene star of a language: L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =

⋃
n≥0 Ln

For example, consider the following languages over symbols Σ = {a, b}:

L1 = {an | n ≥ 1} L2 = {bn | n ≥ 1}

L1 ∪ L2 = {an or bn | n ≥ 1}

L1L2 = {anbm | n, m ≥ 1} ̸= {anbn | n ≥ 1}

L∗
1 = {an | n ≥ 0} ≠ {an | n ≥ 1}

Regular expressions (REs) provide a new way to define languages with
above operations without using finite automata!

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 5 / 21

Recall: Operations in Languages
We already learned the following operations on languages:

• Union of languages: L1 ∪ L2
• Concatenation of languages: L1L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}
• Kleene star of a language: L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =

⋃
n≥0 Ln

For example, consider the following languages over symbols Σ = {a, b}:

L1 = {an | n ≥ 1} L2 = {bn | n ≥ 1}

L1 ∪ L2 = {an or bn | n ≥ 1}

L1L2 = {anbm | n, m ≥ 1} ̸= {anbn | n ≥ 1}

L∗
1 = {an | n ≥ 0} ≠ {an | n ≥ 1}

Regular expressions (REs) provide a new way to define languages with
above operations without using finite automata!

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 5 / 21

Recall: Operations in Languages
We already learned the following operations on languages:

• Union of languages: L1 ∪ L2
• Concatenation of languages: L1L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}
• Kleene star of a language: L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =

⋃
n≥0 Ln

For example, consider the following languages over symbols Σ = {a, b}:

L1 = {an | n ≥ 1} L2 = {bn | n ≥ 1}

L1 ∪ L2 = {an or bn | n ≥ 1}

L1L2 = {anbm | n, m ≥ 1} ̸= {anbn | n ≥ 1}

L∗
1 = {an | n ≥ 0} ≠ {an | n ≥ 1}

Regular expressions (REs) provide a new way to define languages with
above operations without using finite automata!

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 5 / 21

Recall: Operations in Languages
We already learned the following operations on languages:

• Union of languages: L1 ∪ L2
• Concatenation of languages: L1L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}
• Kleene star of a language: L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =

⋃
n≥0 Ln

For example, consider the following languages over symbols Σ = {a, b}:

L1 = {an | n ≥ 1} L2 = {bn | n ≥ 1}

L1 ∪ L2 = {an or bn | n ≥ 1}

L1L2 = {anbm | n, m ≥ 1} ̸= {anbn | n ≥ 1}

L∗
1 = {an | n ≥ 0} ≠ {an | n ≥ 1}

Regular expressions (REs) provide a new way to define languages with
above operations without using finite automata!

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 5 / 21

Recall: Operations in Languages
We already learned the following operations on languages:

• Union of languages: L1 ∪ L2
• Concatenation of languages: L1L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}
• Kleene star of a language: L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =

⋃
n≥0 Ln

For example, consider the following languages over symbols Σ = {a, b}:

L1 = {an | n ≥ 1} L2 = {bn | n ≥ 1}

L1 ∪ L2 = {an or bn | n ≥ 1}

L1L2 = {anbm | n, m ≥ 1} ̸= {anbn | n ≥ 1}

L∗
1 = {an | n ≥ 0} ≠ {an | n ≥ 1}

Regular expressions (REs) provide a new way to define languages with
above operations without using finite automata!

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 5 / 21

Definition of Regular Expressions

Definition (Regular Expressions)
A regular expression over a set of symbols Σ is inductively defined as:

• (Basis Case) ∅, ϵ, and a ∈ Σ are regular expressions.
• (Induction Case) If R1 and R2 are regular expressions, then so are

R1 | R2, R1R2, R∗, and (R).

The following is the syntax of regular expressions and examples:

R ::= ∅ (Empty)
| ϵ (Epsilon)
| a (Symbol)

| R | R (Union)
| R R (Concatenation)
| R∗ (Kleene Star)
| (R) (Parentheses)

∅ ϵ a a|b ab

a∗ a(∅|c)∗ (aϵ)|b∗ (a(bc∗b)∗)∗ (a∅a)|b∗

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 6 / 21

Definition of Regular Expressions

Definition (Regular Expressions)
A regular expression over a set of symbols Σ is inductively defined as:

• (Basis Case) ∅, ϵ, and a ∈ Σ are regular expressions.
• (Induction Case) If R1 and R2 are regular expressions, then so are

R1 | R2, R1R2, R∗, and (R).

The following is the syntax of regular expressions and examples:

R ::= ∅ (Empty)
| ϵ (Epsilon)
| a (Symbol)

| R | R (Union)
| R R (Concatenation)
| R∗ (Kleene Star)
| (R) (Parentheses)

∅ ϵ a a|b ab

a∗ a(∅|c)∗ (aϵ)|b∗ (a(bc∗b)∗)∗ (a∅a)|b∗

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 6 / 21

Precedence Order
Arithmetic expressions have the following precedence order:

× > +

It means that multiplication (×) has higher precedence than addition (+).
For example,

1 + 2 × 3 means 1 + (2 × 3)

Similarly, regular expressions have the following precedence order:

∗ > · > |

For example,

a|ϵb∗ means a|(ϵ(b∗))

(a|ϵ)b∗ means (a|ϵ)(b∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 7 / 21

Precedence Order
Arithmetic expressions have the following precedence order:

× > +

It means that multiplication (×) has higher precedence than addition (+).
For example,

1 + 2 × 3 means 1 + (2 × 3)

Similarly, regular expressions have the following precedence order:

∗ > · > |

For example,

a|ϵb∗ means a|(ϵ(b∗))

(a|ϵ)b∗ means (a|ϵ)(b∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 7 / 21

Precedence Order
Arithmetic expressions have the following precedence order:

× > +

It means that multiplication (×) has higher precedence than addition (+).
For example,

1 + 2 × 3 means 1 + (2 × 3)

Similarly, regular expressions have the following precedence order:

∗ > · > |

For example,

a|ϵb∗ means a|(ϵ(b∗))

(a|ϵ)b∗ means (a|ϵ)(b∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 7 / 21

Definition of Regular Expressions
// The definition of regular expressions
enum RE:

case Emp // ∅
case Eps // ϵ
case Sym(symbol: Symbol) // a
case Union(left: RE, right: RE) // R1 | R2
case Concat(left: RE, right: RE) // R1R2
case Star(re: RE) // R∗

In the algebraic data type (ADT) of regular expressions, we do not need
to explicitly define the parentheses because it is already handled by the
structure of the ADT.

// import all constructors (Emp, Eps, Sym, Union, Concat, Star) of RE
import RE.*

// a | ϵ b*
val re1: RE = Union(Sym('a'), Concat(Eps, Star(Sym('b'))))

// (a | ϵ) b*
val re2: RE = Concat(Union(Sym('a'), Eps), Star(Sym('b')))

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 8 / 21

Definition of Regular Expressions
// The definition of regular expressions
enum RE:

case Emp // ∅
case Eps // ϵ
case Sym(symbol: Symbol) // a
case Union(left: RE, right: RE) // R1 | R2
case Concat(left: RE, right: RE) // R1R2
case Star(re: RE) // R∗

In the algebraic data type (ADT) of regular expressions, we do not need
to explicitly define the parentheses because it is already handled by the
structure of the ADT.

// import all constructors (Emp, Eps, Sym, Union, Concat, Star) of RE
import RE.*

// a | ϵ b*
val re1: RE = Union(Sym('a'), Concat(Eps, Star(Sym('b'))))

// (a | ϵ) b*
val re2: RE = Concat(Union(Sym('a'), Eps), Star(Sym('b')))

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 8 / 21

Language of Regular Expressions

Definition (Language of Regular Expressions)
For a given regular expression R on a set of symbols Σ, the language
L(R) of R is inductively defined as follows:

L(∅) = ∅
L(ϵ) = {ϵ}
L(a) = {a}

L(R1 | R2) = L(R1) ∪ L(R2)
L(R1R2) = L(R1)L(R2)
L(R∗) = L(R)∗

L((R)) = L(R)

L(a|ϵb∗) = L(a) ∪ L(ϵb∗) = {a} ∪ L(ϵ)L(b∗)
= {a} ∪ {ϵ}L(b)∗ = {a} ∪ {ϵ}{b}∗

= {a} ∪ {b}∗ = {a or bn | n ≥ 0}

L((a|ϵ)b∗) = L((a|ϵ))L(b∗) = L(a|ϵ)L(b)∗

= (L(a) ∪ L(ϵ))L(b)∗ = ({a} ∪ {ϵ}){b}∗

= {abn or bn | n ≥ 0}

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 9 / 21

Language of Regular Expressions

Definition (Language of Regular Expressions)
For a given regular expression R on a set of symbols Σ, the language
L(R) of R is inductively defined as follows:

L(∅) = ∅
L(ϵ) = {ϵ}
L(a) = {a}

L(R1 | R2) = L(R1) ∪ L(R2)
L(R1R2) = L(R1)L(R2)
L(R∗) = L(R)∗

L((R)) = L(R)

L(a|ϵb∗) = L(a) ∪ L(ϵb∗) = {a} ∪ L(ϵ)L(b∗)
= {a} ∪ {ϵ}L(b)∗ = {a} ∪ {ϵ}{b}∗

= {a} ∪ {b}∗ = {a or bn | n ≥ 0}

L((a|ϵ)b∗) = L((a|ϵ))L(b∗) = L(a|ϵ)L(b)∗

= (L(a) ∪ L(ϵ))L(b)∗ = ({a} ∪ {ϵ}){b}∗

= {abn or bn | n ≥ 0}

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 9 / 21

Language of Regular Expressions

Definition (Language of Regular Expressions)
For a given regular expression R on a set of symbols Σ, the language
L(R) of R is inductively defined as follows:

L(∅) = ∅
L(ϵ) = {ϵ}
L(a) = {a}

L(R1 | R2) = L(R1) ∪ L(R2)
L(R1R2) = L(R1)L(R2)
L(R∗) = L(R)∗

L((R)) = L(R)

L(a|ϵb∗) = L(a) ∪ L(ϵb∗) = {a} ∪ L(ϵ)L(b∗)
= {a} ∪ {ϵ}L(b)∗ = {a} ∪ {ϵ}{b}∗

= {a} ∪ {b}∗ = {a or bn | n ≥ 0}

L((a|ϵ)b∗) = L((a|ϵ))L(b∗) = L(a|ϵ)L(b)∗

= (L(a) ∪ L(ϵ))L(b)∗ = ({a} ∪ {ϵ}){b}∗

= {abn or bn | n ≥ 0}

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 9 / 21

Extended Regular Expressions
More operators can be added to regular expressions:

R ::= · · ·
| R+ (Kleene plus)
| R? (Optional)

(Note that + and ? have same precedence as ∗.)

Actually, they are just syntactic sugar for the existing operators:

L(R+) = L(RR∗) = L(R∗R)

L(R?) = L(R|ϵ) = L(ϵ|R)

For examples,

L((ab)+) = L(ab(ab)∗) = {(ab)n | n ≥ 1}

L(a?b) = L((a|ϵ)b) = {ab, b}

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 10 / 21

Extended Regular Expressions
More operators can be added to regular expressions:

R ::= · · ·
| R+ (Kleene plus)
| R? (Optional)

(Note that + and ? have same precedence as ∗.)

Actually, they are just syntactic sugar for the existing operators:

L(R+) = L(RR∗) = L(R∗R)

L(R?) = L(R|ϵ) = L(ϵ|R)

For examples,

L((ab)+) = L(ab(ab)∗) = {(ab)n | n ≥ 1}

L(a?b) = L((a|ϵ)b) = {ab, b}

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 10 / 21

Extended Regular Expressions
More operators can be added to regular expressions:

R ::= · · ·
| R+ (Kleene plus)
| R? (Optional)

(Note that + and ? have same precedence as ∗.)

Actually, they are just syntactic sugar for the existing operators:

L(R+) = L(RR∗) = L(R∗R)

L(R?) = L(R|ϵ) = L(ϵ|R)

For examples,

L((ab)+) = L(ab(ab)∗) = {(ab)n | n ≥ 1}

L(a?b) = L((a|ϵ)b) = {ab, b}

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 10 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {ϵ, a, b}

ϵ|a|b or (a|b)?

• L = {w ∈ {0, 1}∗ | w contains exactly two 0′s}

1∗01∗01∗

• L = {w ∈ {0, 1}∗ | w contains at least two 0′s}

(0|1)∗0(0|1)∗0(0|1)∗

• L = {w ∈ {0, 1}∗ | w has three consecutive 0′s}

(0|1)∗000(0|1)∗

• L = {w ∈ {a, b}∗ | a and b alternate in w}

a?(ba)∗b?

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 11 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0}

– IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Examples
• L = {anbm | n ≥ 3 ∧ m ≡ 0(mod 2)}

aaa+(bb)∗

• L = {anbm | n + m ≡ 0(mod 2)}

(aa)∗(ab)?(bb)∗

• L = {w ∈ {0, 1}∗ | the number of 0’s is divisible by 3}

1∗(01∗01∗01∗)∗

• L = {w ∈ {0, 1}∗ | N(w) ≡ 0 (mod 3)} where N(w) is the natural
number represented by w in binary

(0|1(01∗0)∗1)∗

• L = {anbn | n ≥ 0} – IMPOSSIBLE (∄ RE R. L(R) = L)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 12 / 21

Equivalence of Regular Expressions
We say two regular expressions R1 and R2 are equivalent (R1 ≡ R2) if
their languages are the same: L(R1) = L(R2).

Regular expressions have following equivalence relations:
• Associativity for union and concatenation:

R1|(R2|R3) ≡ (R1|R2)|R3 and R1(R2R3) ≡ (R1R2)R3

• Commutativity for union:

R1|R2 ≡ R2|R1

• Left and right distributive laws:

(R1|R2)R3 ≡ R1R3|R2R3 and R1(R2|R3) ≡ R1R2|R1R3

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 13 / 21

Equivalence of Regular Expressions
We say two regular expressions R1 and R2 are equivalent (R1 ≡ R2) if
their languages are the same: L(R1) = L(R2).

Regular expressions have following equivalence relations:
• Associativity for union and concatenation:

R1|(R2|R3) ≡ (R1|R2)|R3 and R1(R2R3) ≡ (R1R2)R3

• Commutativity for union:

R1|R2 ≡ R2|R1

• Left and right distributive laws:

(R1|R2)R3 ≡ R1R3|R2R3 and R1(R2|R3) ≡ R1R2|R1R3

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 13 / 21

Equivalence of Regular Expressions
We say two regular expressions R1 and R2 are equivalent (R1 ≡ R2) if
their languages are the same: L(R1) = L(R2).

Regular expressions have following equivalence relations:
• Associativity for union and concatenation:

R1|(R2|R3) ≡ (R1|R2)|R3 and R1(R2R3) ≡ (R1R2)R3

• Commutativity for union:

R1|R2 ≡ R2|R1

• Left and right distributive laws:

(R1|R2)R3 ≡ R1R3|R2R3 and R1(R2|R3) ≡ R1R2|R1R3

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 13 / 21

Equivalence of Regular Expressions
We say two regular expressions R1 and R2 are equivalent (R1 ≡ R2) if
their languages are the same: L(R1) = L(R2).

Regular expressions have following equivalence relations:
• Associativity for union and concatenation:

R1|(R2|R3) ≡ (R1|R2)|R3 and R1(R2R3) ≡ (R1R2)R3

• Commutativity for union:

R1|R2 ≡ R2|R1

• Left and right distributive laws:

(R1|R2)R3 ≡ R1R3|R2R3 and R1(R2|R3) ≡ R1R2|R1R3

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 13 / 21

Equivalence of Regular Expressions
• ∅ and ϵ are identity for union and concatenation:

R|∅ ≡ ∅|R ≡ R and Rϵ ≡ ϵR ≡ R

• ∅ is annihilator for concatenation:

R∅ ≡ ∅R ≡ ∅

• Idempotent Law for union:

R|R ≡ R

• Laws involving Kleene star:

(R∗)∗ ≡ R∗ and ∅∗ ≡ ϵ and ϵ∗ ≡ ϵ

ϵ|R∗ ≡ R∗|ϵ ≡ R∗ and R|R∗ ≡ R∗|R ≡ R∗

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 14 / 21

Equivalence of Regular Expressions
• ∅ and ϵ are identity for union and concatenation:

R|∅ ≡ ∅|R ≡ R and Rϵ ≡ ϵR ≡ R

• ∅ is annihilator for concatenation:

R∅ ≡ ∅R ≡ ∅

• Idempotent Law for union:

R|R ≡ R

• Laws involving Kleene star:

(R∗)∗ ≡ R∗ and ∅∗ ≡ ϵ and ϵ∗ ≡ ϵ

ϵ|R∗ ≡ R∗|ϵ ≡ R∗ and R|R∗ ≡ R∗|R ≡ R∗

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 14 / 21

Equivalence of Regular Expressions
• ∅ and ϵ are identity for union and concatenation:

R|∅ ≡ ∅|R ≡ R and Rϵ ≡ ϵR ≡ R

• ∅ is annihilator for concatenation:

R∅ ≡ ∅R ≡ ∅

• Idempotent Law for union:

R|R ≡ R

• Laws involving Kleene star:

(R∗)∗ ≡ R∗ and ∅∗ ≡ ϵ and ϵ∗ ≡ ϵ

ϵ|R∗ ≡ R∗|ϵ ≡ R∗ and R|R∗ ≡ R∗|R ≡ R∗

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 14 / 21

Equivalence of Regular Expressions
• ∅ and ϵ are identity for union and concatenation:

R|∅ ≡ ∅|R ≡ R and Rϵ ≡ ϵR ≡ R

• ∅ is annihilator for concatenation:

R∅ ≡ ∅R ≡ ∅

• Idempotent Law for union:

R|R ≡ R

• Laws involving Kleene star:

(R∗)∗ ≡ R∗ and ∅∗ ≡ ϵ and ϵ∗ ≡ ϵ

ϵ|R∗ ≡ R∗|ϵ ≡ R∗ and R|R∗ ≡ R∗|R ≡ R∗

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 14 / 21

Simplifying Regular Expressions
We can simplify regular expressions using the equivalence laws.

For example,

((a∅)∗(b|∅|b∗))∗ ≡ (∅∗(b|∅|b∗))∗ (∵ R∅ ≡ ∅ – Annihilator)

≡ (ϵ(b|∅|b∗))∗ (∵ ∅∗ ≡ ϵ)

≡ (b|∅|b∗)∗ (∵ ϵR ≡ R – Identity)

≡ (b|b∗)∗ (∵ R|∅ ≡ R – Identity)

≡ (b∗)∗ (∵ R|R∗ ≡ R∗)

≡ b∗ (∵ (R∗)∗ ≡ R∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 15 / 21

Simplifying Regular Expressions
We can simplify regular expressions using the equivalence laws.

For example,

((a∅)∗(b|∅|b∗))∗

≡ (∅∗(b|∅|b∗))∗ (∵ R∅ ≡ ∅ – Annihilator)

≡ (ϵ(b|∅|b∗))∗ (∵ ∅∗ ≡ ϵ)

≡ (b|∅|b∗)∗ (∵ ϵR ≡ R – Identity)

≡ (b|b∗)∗ (∵ R|∅ ≡ R – Identity)

≡ (b∗)∗ (∵ R|R∗ ≡ R∗)

≡ b∗ (∵ (R∗)∗ ≡ R∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 15 / 21

Simplifying Regular Expressions
We can simplify regular expressions using the equivalence laws.

For example,

((a∅)∗(b|∅|b∗))∗ ≡ (∅∗(b|∅|b∗))∗ (∵ R∅ ≡ ∅ – Annihilator)

≡ (ϵ(b|∅|b∗))∗ (∵ ∅∗ ≡ ϵ)

≡ (b|∅|b∗)∗ (∵ ϵR ≡ R – Identity)

≡ (b|b∗)∗ (∵ R|∅ ≡ R – Identity)

≡ (b∗)∗ (∵ R|R∗ ≡ R∗)

≡ b∗ (∵ (R∗)∗ ≡ R∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 15 / 21

Simplifying Regular Expressions
We can simplify regular expressions using the equivalence laws.

For example,

((a∅)∗(b|∅|b∗))∗ ≡ (∅∗(b|∅|b∗))∗ (∵ R∅ ≡ ∅ – Annihilator)

≡ (ϵ(b|∅|b∗))∗ (∵ ∅∗ ≡ ϵ)

≡ (b|∅|b∗)∗ (∵ ϵR ≡ R – Identity)

≡ (b|b∗)∗ (∵ R|∅ ≡ R – Identity)

≡ (b∗)∗ (∵ R|R∗ ≡ R∗)

≡ b∗ (∵ (R∗)∗ ≡ R∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 15 / 21

Simplifying Regular Expressions
We can simplify regular expressions using the equivalence laws.

For example,

((a∅)∗(b|∅|b∗))∗ ≡ (∅∗(b|∅|b∗))∗ (∵ R∅ ≡ ∅ – Annihilator)

≡ (ϵ(b|∅|b∗))∗ (∵ ∅∗ ≡ ϵ)

≡ (b|∅|b∗)∗ (∵ ϵR ≡ R – Identity)

≡ (b|b∗)∗ (∵ R|∅ ≡ R – Identity)

≡ (b∗)∗ (∵ R|R∗ ≡ R∗)

≡ b∗ (∵ (R∗)∗ ≡ R∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 15 / 21

Simplifying Regular Expressions
We can simplify regular expressions using the equivalence laws.

For example,

((a∅)∗(b|∅|b∗))∗ ≡ (∅∗(b|∅|b∗))∗ (∵ R∅ ≡ ∅ – Annihilator)

≡ (ϵ(b|∅|b∗))∗ (∵ ∅∗ ≡ ϵ)

≡ (b|∅|b∗)∗ (∵ ϵR ≡ R – Identity)

≡ (b|b∗)∗ (∵ R|∅ ≡ R – Identity)

≡ (b∗)∗ (∵ R|R∗ ≡ R∗)

≡ b∗ (∵ (R∗)∗ ≡ R∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 15 / 21

Simplifying Regular Expressions
We can simplify regular expressions using the equivalence laws.

For example,

((a∅)∗(b|∅|b∗))∗ ≡ (∅∗(b|∅|b∗))∗ (∵ R∅ ≡ ∅ – Annihilator)

≡ (ϵ(b|∅|b∗))∗ (∵ ∅∗ ≡ ϵ)

≡ (b|∅|b∗)∗ (∵ ϵR ≡ R – Identity)

≡ (b|b∗)∗ (∵ R|∅ ≡ R – Identity)

≡ (b∗)∗ (∵ R|R∗ ≡ R∗)

≡ b∗ (∵ (R∗)∗ ≡ R∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 15 / 21

Simplifying Regular Expressions
We can simplify regular expressions using the equivalence laws.

For example,

((a∅)∗(b|∅|b∗))∗ ≡ (∅∗(b|∅|b∗))∗ (∵ R∅ ≡ ∅ – Annihilator)

≡ (ϵ(b|∅|b∗))∗ (∵ ∅∗ ≡ ϵ)

≡ (b|∅|b∗)∗ (∵ ϵR ≡ R – Identity)

≡ (b|b∗)∗ (∵ R|∅ ≡ R – Identity)

≡ (b∗)∗ (∵ R|R∗ ≡ R∗)

≡ b∗ (∵ (R∗)∗ ≡ R∗)

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 15 / 21

Contents

1. Regular Expressions
Recall: Operations in Languages
Definition
Precedence Order
Language of Regular Expressions
Extended Regular Expressions
Examples

2. Regular Expressions in Practice

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 16 / 21

Regular Expressions in Practice
Most programming languages support regular expressions:

• Scala – scala.util.matching.Regex class
• Python – re module
• JavaScript – RegExp object
• Rust – regex crate
• . . .

For example, we can convert a string to a regular expression (Regex)
object by using the r method in Scala:

import scala.util.matching.Regex

val re: Regex = "(a|b)c*".r
re.matches("a") // true
re.matches("b") // true
re.matches("accc") // true
re.matches("bccccc") // true
re.matches("ba") // false
re.matches("cba") // false
re.matches("aacc") // false
re.matches("cccccc") // false

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 17 / 21

Regular Expressions in Practice
Most programming languages support regular expressions:

• Scala – scala.util.matching.Regex class
• Python – re module
• JavaScript – RegExp object
• Rust – regex crate
• . . .

For example, we can convert a string to a regular expression (Regex)
object by using the r method in Scala:

import scala.util.matching.Regex

val re: Regex = "(a|b)c*".r
re.matches("a") // true
re.matches("b") // true
re.matches("accc") // true
re.matches("bccccc") // true
re.matches("ba") // false
re.matches("cba") // false
re.matches("aacc") // false
re.matches("cccccc") // false

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 17 / 21

Regular Expressions in Practice
In practice, regular expressions support more syntactic sugar:

Syntax Description
ˆ start of the line
$ end of the line
. any character
[] any character in the set

[ˆ] any character not in the set
\d any digit
\w any alphanumeric character

"ci[dait]*".r "\\w+$".r "\\d+".r

For example, above Scala regular expressions find patterns in each string:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut 53 et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation 42 laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate 129 esse cillum dolore eu
fugiat nulla 5323. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 18 / 21

Regular Expressions in Practice
In practice, regular expressions support more syntactic sugar:

Syntax Description
ˆ start of the line
$ end of the line
. any character
[] any character in the set

[ˆ] any character not in the set
\d any digit
\w any alphanumeric character

"ci[dait]*".r "\\w+$".r "\\d+".r

For example, above Scala regular expressions find patterns in each string:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut 53 et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation 42 laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate 129 esse cillum dolore eu
fugiat nulla 5323. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 18 / 21

Regular Expressions in Research
There are diverse active research topics for regular expressions:

• Synthesis – synthesize regular expressions
• Security – detect ReDoS (Regular Expression Denial of Service)
• Testing – detect bugs in regular expression engines

For example, we can synthesize regular expressions from examples:1

all examples. However, due to the huge search space, this
naive algorithm is unlikely to find a solution with reason-
able time cost for an interactive system. We present novel
techniques that prune out the search space effectively while
guaranteeing to find the simplest solutions. The key idea is to
over- and under-approximate regular expressions to predict
whether the current search state can be the final solution or
not. We formally present the techniques and prove that they
prune out a particular portion of the search space in a sound
and complete way.

We implemented our method in a tool, ALPHAREGEX,
and evaluated its performance with 25 benchmark problems.
Most problems came from popular textbooks on automata
theory [17, 20, 26]. The benchmarks include tricky problems
that even instructors find hard to solve. The results show that
ALPHAREGEX can synthesize desired regular expressions
within 6.7 seconds on the average.

Contributions We summarize our contributions:

• We present a new algorithm for synthesizing regular ex-
pressions from examples. We present novel techniques
that effectively prune out a large search space using over-
and under-approximations of regular expressions.

• We prove the effectiveness of the technique with 25
benchmark problems including tricky ones that most stu-
dents find difficult. The results show that our method
quickly derives regular expressions on all of the bench-
marks.

• We provide a tool, ALPHAREGEX, which is publicly
available.1

2. Overview
In this section, we first illustrate the utility of our tool with
two motivating examples. Then, we briefly explain the key
ideas behind our synthesis algorithm. Throughout the paper,
we assume that the binary alphabet ⌃ = {0, 1} is used.

2.1 Motivating Examples
Our tool is useful for automatically assisting students who
learn regular expressions for the first time.

Finding optimal solutions Suppose we want to find a reg-
ular expression for the language below:

L = {Strings have exactly one pair of consecutive 0s}.

The description of L states that the language consists of the
strings which have exactly one pair of consecutive 0s (i.e.
00). For example, 00, 1001, and 010010 are in the language
since they have one pair of continuous 0s, whereas 11, 000,
and 00100 are not, because either they do not have it or they
have more than one pair of consecutive 0s.

When we asked students to construct regular expressions
for the language, we found that most of their answers were

1 http://prl.korea.ac.kr/AlphaRegex

Description
Strings have exactly one pair of consecutive 0s

Examples
Positive Negative

00 01
1001 11

010010 000
1011001110 00100

Answers
Students 1⇤(01)⇤1⇤001⇤(10)⇤1⇤

ALPHAREGEX (0?1)⇤00(10?)⇤

Table 1. Finding optimal solutions

Description
Strings have at most one pair of consecutive 1s

Examples
Positive Negative

0 111
11 110011

101010 0110110
00011000 00011001100

00100110001 011100011110
Answers

Students
A variety of uncertain

answers
ALPHAREGEX (1?0)⇤1?1?(01?)⇤

Table 2. Solving difficult problems

far from being optimal, containing lots of unnecessary sym-
bols and operators. The most common answer we observed
was 1⇤(01)⇤1⇤001⇤(10)⇤1⇤; there is one pair of consecu-
tive 0s at the middle, and on both sides, there can be any
expressions as long as not having consecutive 0s, repre-
sented as 1⇤(01)⇤1 and 1⇤(10)⇤1⇤. Although the students
could find a correct answer, most of them were curious to
know the existence of a simpler solution. In this case, AL-
PHAREGEX responded to them by synthesizing the regular
expression (0?1)⇤00(10?)⇤, which is much simpler than the
regular expression constructed by students. Besides being
the simplest, it is also very compact, precise, and easier to
interpret, which makes it much more desirable. The exam-
ples used for this synthesis problem are listed in Table 1.
Given the examples, ALPHAREGEX is able to synthesize the
solution in one second.

Solving difficult problems Consider the following lan-
guage:

L = {Strings have at most one pair of consecutive 1s}.

The language L is composed of the strings which have ei-
ther zero or one pair of consecutive 1s (i.e. 11). For instance,
0, 11, and 101010 are in the language since they either do

71

1[GPCE 2016] M. Lee, S. So, and H. Oh. “Synthesizing regular expressions from
examples for introductory automata assignments.”

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 19 / 21

Regular Expressions in Research
There are diverse active research topics for regular expressions:

• Synthesis – synthesize regular expressions
• Security – detect ReDoS (Regular Expression Denial of Service)
• Testing – detect bugs in regular expression engines

For example, we can synthesize regular expressions from examples:1

all examples. However, due to the huge search space, this
naive algorithm is unlikely to find a solution with reason-
able time cost for an interactive system. We present novel
techniques that prune out the search space effectively while
guaranteeing to find the simplest solutions. The key idea is to
over- and under-approximate regular expressions to predict
whether the current search state can be the final solution or
not. We formally present the techniques and prove that they
prune out a particular portion of the search space in a sound
and complete way.

We implemented our method in a tool, ALPHAREGEX,
and evaluated its performance with 25 benchmark problems.
Most problems came from popular textbooks on automata
theory [17, 20, 26]. The benchmarks include tricky problems
that even instructors find hard to solve. The results show that
ALPHAREGEX can synthesize desired regular expressions
within 6.7 seconds on the average.

Contributions We summarize our contributions:

• We present a new algorithm for synthesizing regular ex-
pressions from examples. We present novel techniques
that effectively prune out a large search space using over-
and under-approximations of regular expressions.

• We prove the effectiveness of the technique with 25
benchmark problems including tricky ones that most stu-
dents find difficult. The results show that our method
quickly derives regular expressions on all of the bench-
marks.

• We provide a tool, ALPHAREGEX, which is publicly
available.1

2. Overview
In this section, we first illustrate the utility of our tool with
two motivating examples. Then, we briefly explain the key
ideas behind our synthesis algorithm. Throughout the paper,
we assume that the binary alphabet ⌃ = {0, 1} is used.

2.1 Motivating Examples
Our tool is useful for automatically assisting students who
learn regular expressions for the first time.

Finding optimal solutions Suppose we want to find a reg-
ular expression for the language below:

L = {Strings have exactly one pair of consecutive 0s}.

The description of L states that the language consists of the
strings which have exactly one pair of consecutive 0s (i.e.
00). For example, 00, 1001, and 010010 are in the language
since they have one pair of continuous 0s, whereas 11, 000,
and 00100 are not, because either they do not have it or they
have more than one pair of consecutive 0s.

When we asked students to construct regular expressions
for the language, we found that most of their answers were

1 http://prl.korea.ac.kr/AlphaRegex

Description
Strings have exactly one pair of consecutive 0s

Examples
Positive Negative

00 01
1001 11

010010 000
1011001110 00100

Answers
Students 1⇤(01)⇤1⇤001⇤(10)⇤1⇤

ALPHAREGEX (0?1)⇤00(10?)⇤

Table 1. Finding optimal solutions

Description
Strings have at most one pair of consecutive 1s

Examples
Positive Negative

0 111
11 110011

101010 0110110
00011000 00011001100

00100110001 011100011110
Answers

Students
A variety of uncertain

answers
ALPHAREGEX (1?0)⇤1?1?(01?)⇤

Table 2. Solving difficult problems

far from being optimal, containing lots of unnecessary sym-
bols and operators. The most common answer we observed
was 1⇤(01)⇤1⇤001⇤(10)⇤1⇤; there is one pair of consecu-
tive 0s at the middle, and on both sides, there can be any
expressions as long as not having consecutive 0s, repre-
sented as 1⇤(01)⇤1 and 1⇤(10)⇤1⇤. Although the students
could find a correct answer, most of them were curious to
know the existence of a simpler solution. In this case, AL-
PHAREGEX responded to them by synthesizing the regular
expression (0?1)⇤00(10?)⇤, which is much simpler than the
regular expression constructed by students. Besides being
the simplest, it is also very compact, precise, and easier to
interpret, which makes it much more desirable. The exam-
ples used for this synthesis problem are listed in Table 1.
Given the examples, ALPHAREGEX is able to synthesize the
solution in one second.

Solving difficult problems Consider the following lan-
guage:

L = {Strings have at most one pair of consecutive 1s}.

The language L is composed of the strings which have ei-
ther zero or one pair of consecutive 1s (i.e. 11). For instance,
0, 11, and 101010 are in the language since they either do

71

1[GPCE 2016] M. Lee, S. So, and H. Oh. “Synthesizing regular expressions from
examples for introductory automata assignments.”

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 19 / 21

Summary

1. Regular Expressions
Recall: Operations in Languages
Definition
Precedence Order
Language of Regular Expressions
Extended Regular Expressions
Examples

2. Regular Expressions in Practice

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 20 / 21

Next Lecture
• Equivalence of Regular Expressions and Finite Automata

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE215 @ Korea University Lecture 6 - Regular Expressions March 26, 2025 21 / 21

https://plrg.korea.ac.kr

	Regular Expressions
	Recall: Operations in Languages
	Definition
	Precedence Order
	Language of Regular Expressions
	Extended Regular Expressions
	Examples

	Regular Expressions in Practice

