Lecture 7 – Equivalence of Regular Expressions and Finite Automata

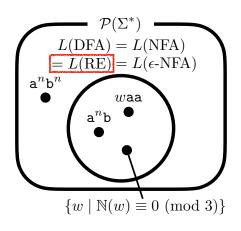
COSE215: Theory of Computation

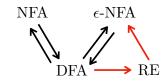
Jihyeok Park

2025 Spring

- Regular Expressions
 - Operations in languages
 - Definition
 - Precedence order
 - Language of regular expressions
 - Extended regular expressions
 - Examples
- Regular Expressions in Practice

Equivalence of REs and FA





Contents

1. Regular Expressions to ϵ -NFA

2. DFA to Regular Expressions

Inductive Construction of Regular Expressions State Elimination Method

Contents

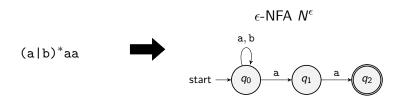
1. Regular Expressions to ϵ -NFA

2. DFA to Regular Expressions

Inductive Construction of Regular Expressions
State Elimination Method

Theorem (Regular Expressions to ϵ -NFA)

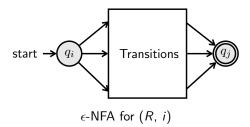
For a given regular expression R, $\exists \epsilon$ -NFA N^{ϵ} . $L(R) = L(N^{\epsilon})$.



For a given regular expression R and an integer i, we will construct an ϵ -NFA $N^{\epsilon}=(Q,\Sigma,\delta,q_i,F)$ that accepts the language of R.

It satisfies the following properties:

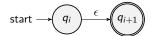
- States are q_i , q_{i+1} , \cdots , and q_j ($Q = \{q_k \mid i \leq k \leq j\}$)
- The last state is the unique final state $(F = \{q_i\})$
- No transition to the initial state $(\forall q \in Q. \ \forall a \in \Sigma \cup \{\epsilon\}. \ q_i \notin \delta(q, a))$
- No transition from the final state $(\forall a \in \Sigma \cup \{\epsilon\}. \ \delta(q_i, a) = \varnothing)$



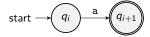
For a given regular expression R and an integer i, the ϵ -NFA for (R, i) is:

• $R = \varnothing$:

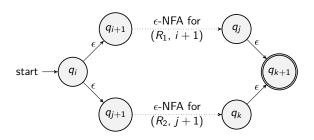
• $R = \epsilon$:



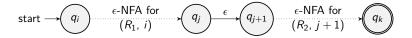
• R = a:



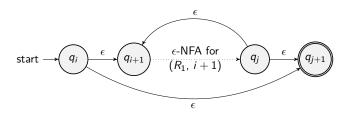
• $R = R_1 \mid R_2$:



• $R = R_1 R_2$:

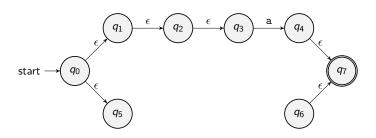


• $R = R_1^*$:



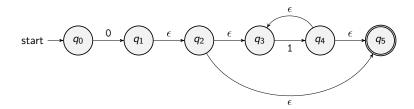
Regular Expressions to ϵ -NFA – Examples

• $R = \epsilon a | \varnothing$



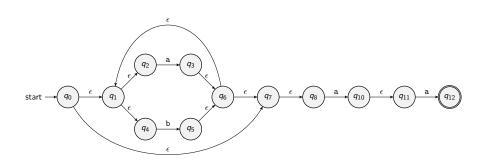
Regular Expressions to ϵ -NFA – Examples

• $R = 01^*$



Regular Expressions to ϵ -NFA – Examples

• $R = (a|b)^*aa$



Contents

1. Regular Expressions to ϵ -NFA

2. DFA to Regular Expressions

Inductive Construction of Regular Expressions State Elimination Method

DFA to Regular Expressions

Theorem (DFA to Regular Expressions)

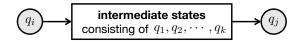
For a given DFA $D = (Q, \Sigma, \delta, q_1, F)$, $\exists RE R. L(D) = L(R)$.

We will learn two different way to convert a DFA to a regular expression.

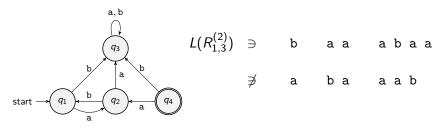
1 Inductive Construction of Regular Expressions for paths in a DFA with bounded intermediate states where $Q = \{q_1, q_2, \dots, q_n\}$.

State Elimination Method in an extended DFA using regular expressions as labels.

Let $R_{i,j}^{(k)}$ be the **regular expression** that accepts the **paths** from q_i to q_j whose indices of the **intermediate** states are **bounded** by k.



For example, $R_{1,3}^{(2)}$ is the regular expression that accepts the paths from q_1 to q_3 whose intermediate states are q_1 and q_2 .



We can **inductively construct** regular expressions $R_{i,j}^{(k)}$ for all combination of i, j, and k (induction on k).

• (Basis Case) k=0

It means that no intermediate states in the path.

• If $i \neq j$ (source and destination states are different),

$$R_{i,j}^{(0)}=\mathtt{a}_1\,|\,\mathtt{a}_2\,|\,\cdots\,|\,\mathtt{a}_m$$

where $q_i \xrightarrow{a_1} q_j, q_i \xrightarrow{a_2} q_j, \cdots, q_i \xrightarrow{a_m} q_j$ are transitions in D.

• If i = j (source and destination states are same),

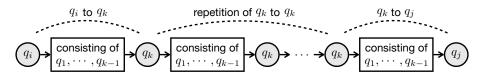
$$R_{i,i}^{(0)} = R_{i,i}^{(0)} = \epsilon |\mathbf{a}_1| \mathbf{a}_2 | \cdots |\mathbf{a}_m|$$

where $q_i \xrightarrow{a_1} q_i, q_i \xrightarrow{a_2} q_i, \cdots, q_i \xrightarrow{a_m} q_i$ are transitions in D.

• (Induction Case) $R_{i,j}^{(k-1)}$ are given for all i and j.

$$R_{i,j}^{(k)} = R_{i,j}^{(k-1)} \mid R_{i,k}^{(k-1)} (R_{k,k}^{(k-1)})^* R_{k,j}^{(k-1)}$$

- $R_{i,j}^{(k-1)}$: paths from q_i to q_j **NOT** containing q_k as intermediate states.
- $R_{i,k}^{(k-1)}(R_{k,k}^{(k-1)})^*R_{k,j}^{(k-1)}$: paths from q_i to q_j containing q_k at least once as intermediate states.



Consider the following DFA:

$$D = (Q, \Sigma, \delta, q_1, F)$$

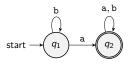
where
$$Q = \{q_1, q_2, \cdots, q_n\}$$
 and $F = \{q_{f_1}, q_{f_2}, \cdots, q_{f_m}\}$.

Then, using the regular expressions $R_{i,j}^{(k)}$ with bounded intermediate states, we can construct the regular expression R that accepts the language of the DFA D as follows:

$$R = R_{1,f_1}^{(n)} | R_{1,f_2}^{(n)} | \cdots | R_{1,f_m}^{(n)}$$

The regular expression R accepts all the paths from the **initial state** q_1 to one of the **final states** q_{f_1} , q_{f_2} , \cdots , q_{f_m} but **no bound** on the intermediate states (because k = n).

Let's construct the regular expressions $R_{i,j}^{(k)}$ for the following DFA:



When k = 0, we have:

- $R_{1,1}^{(0)} = \epsilon | b$
- $R_{1,2}^{(0)} = a$
- $R_{2,1}^{(0)} = \emptyset$
- $R_{2,2}^{(0)} = \epsilon |a|b$

When k = 0, we have:

•
$$R_{1,1}^{(0)} = \epsilon | \mathbf{b}$$

•
$$R_{1,2}^{(0)} = a$$

•
$$R_{2,1}^{(0)} = \emptyset$$

•
$$R_{1,1}^{(0)} = \epsilon \mid b$$
 • $R_{1,2}^{(0)} = a$ • $R_{2,1}^{(0)} = \emptyset$ • $R_{2,2}^{(0)} = \epsilon \mid a \mid b$

When k = 1, we have:

•
$$R_{1,1}^{(1)} = R_{1,1}^{(0)} \mid R_{1,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,1}^{(0)} = (R_{1,1}^{(0)})^+ = (\epsilon \mid b)^+ = b^*$$

•
$$R_{1,2}^{(1)} = R_{1,2}^{(0)} \mid R_{1,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,2}^{(0)} = (R_{1,1}^{(0)})^* R_{1,2}^{(0)} = (\epsilon \mid b)^* a = b^* a$$

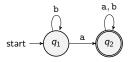
•
$$R_{2,1}^{(1)} = R_{2,1}^{(0)} \mid R_{2,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,1}^{(0)} = \emptyset \mid \emptyset = \emptyset$$

•
$$R_{2,2}^{(1)} = \frac{R_{2,2}^{(0)}}{R_{2,1}^{(0)}} | R_{2,1}^{(0)} (R_{1,1}^{(0)})^* \frac{R_{1,2}^{(0)}}{R_{1,2}^{(0)}} = \frac{R_{2,2}^{(0)}}{R_{2,2}^{(0)}} | \varnothing = \frac{R_{2,2}^{(0)}}{R_{2,2}^{(0)}} = \epsilon | a | b$$

When k = 1, we have:

•
$$R_{1,1}^{(1)} = b^*$$
 • $R_{1,2}^{(1)} = b^*a$ • $R_{2,1}^{(1)} = \emptyset$ • $R_{2,2}^{(1)} = \epsilon |a|b$

Let's focus on the regular expression for the language of the DFA.



We need to compute $R_{1,2}^{(2)}$ using the results when k=1:

•
$$R_{1,2}^{(2)} = R_{1,2}^{(1)} \mid R_{1,2}^{(1)} (R_{2,2}^{(1)})^* R_{2,2}^{(1)} = R_{1,2}^{(1)} (R_{2,2}^{(1)})^*$$

= $b^* a(\epsilon | a | b)^*$ (the regular expression for the above DFA)

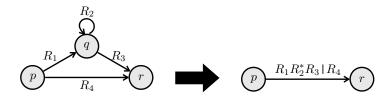
State Elimination Method

- There is another way to convert a DFA to a regular expression.
- It is more intuitive and easier to understand but not easy to implement.
- The idea is to eliminate the states of the DFA one by one and construct the regular expressions.
- We will assign constructed regular expressions instead of symbols as labels on the transitions between the states in the DFA.

State Elimination Method

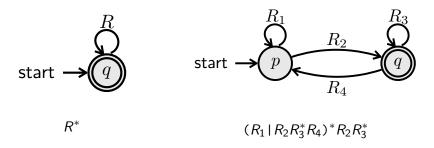
We can convert a DFA to a regular expression using the following steps for **each final state** $q_f \in F$:

- **1 Merge** symbols a_1, a_2, \dots, a_m on the transition from q_i to q_j into a single regular expression $a_1 | a_2 | \dots | a_m$.
- **2** Eliminate a state q that is **not** the **initial** state or the **target final** state using the following mechanism:

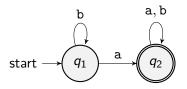


State Elimination Method

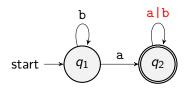
3 Construct regular expressions for the remaining one or two states using the regular expressions on the transitions between the states.



Let's convert the following DFA to a regular expression using the **state elimination** method:

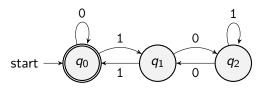


Let's convert the following DFA to a regular expression using the **state elimination** method:

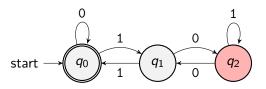


The regular expression for the above DFA is:

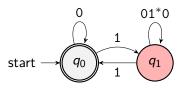
The following DFA accepts $L = \{w \in \{0,1\}^* \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is the natural number represented by w in binary:



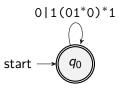
The following DFA accepts $L = \{w \in \{0,1\}^* \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is the natural number represented by w in binary:



The following DFA accepts $L = \{w \in \{0,1\}^* \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is the natural number represented by w in binary:



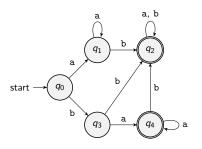
The following DFA accepts $L = \{w \in \{0,1\}^* \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is the natural number represented by w in binary:



Then, the regular expression for the above DFA is:

$$(0|1(01*0)*1)*$$

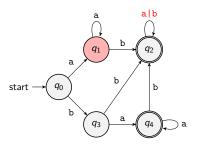
Let's convert the following DFA to a regular expression using the **state elimination** method:



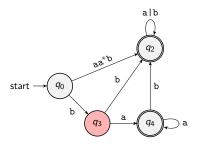
We need to consider two final states q_2 and q_4 .

Let's start by eliminating non-initial and non-final states.

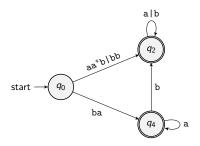
Let's convert the following DFA to a regular expression using the **state elimination** method:



Let's convert the following DFA to a regular expression using the **state elimination** method:



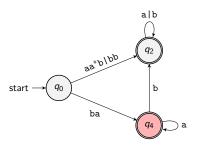
Let's convert the following DFA to a regular expression using the **state elimination** method:



Now, we know that the regular expression for the **final state** q_4 is:

baa*

Let's convert the following DFA to a regular expression using the **state elimination** method:

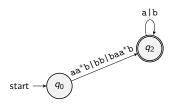


Now, we know that the regular expression for the **final state** q_4 is:

baa*

Let's keep eliminating q_4 to know the regular expression for q_2 .

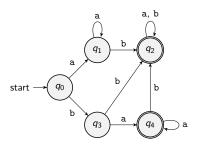
Let's convert the following DFA to a regular expression using the **state elimination** method:



Now, we know that the regular expression for the **final state** q_2 is:

$$(aa*b|bb|baa*b)(a|b)*$$

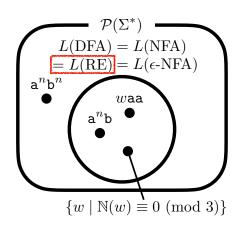
Let's convert the following DFA to a regular expression using the **state elimination** method:

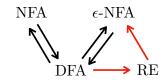


Finally, we have the regular expression for the above DFA:

Note that (aa*b|bb|baa*b)(a|b)* is for q_2 and baa* is for q_4 .

Summary





Next Lecture

• Properties of Regular Languages

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr