
Lecture 10 – Contextual Abstractions
SWS121: Secure Programming

Jihyeok Park

2024 Spring

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 1 / 28



Recall
• Advanced type systems

• Intersection and Union Types

• Self Types

• Opaque Types

• Structural Types

• Type Lambdas

• Polymorphic Function Types

• Match Types

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 2 / 28



Contextual Abstractions
Contextual Abstractions are a way to abstract over the context.

They are all variations of term inference; for a given type, the compiler
automatically infers a term that has that type.

Other languages have been influenced by Scala in this regard.

• Rust’s traits or Swift’s protocol extensions

• Design proposals for other languages are also on the table:

• for Kotlin as compile time dependency resolution

• for C# as Shapes and Extensions

• for F# as Traits

• Also a common feature of theorem provers such as Coq or Agda

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 3 / 28



Contextual Abstractions
Contextual Abstractions are a way to abstract over the context.

They are all variations of term inference; for a given type, the compiler
automatically infers a term that has that type.

Other languages have been influenced by Scala in this regard.

• Rust’s traits or Swift’s protocol extensions

• Design proposals for other languages are also on the table:

• for Kotlin as compile time dependency resolution

• for C# as Shapes and Extensions

• for F# as Traits

• Also a common feature of theorem provers such as Coq or Agda

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 3 / 28



Contextual Abstractions
Contextual Abstractions are a way to abstract over the context.

They are all variations of term inference; for a given type, the compiler
automatically infers a term that has that type.

Other languages have been influenced by Scala in this regard.

• Rust’s traits or Swift’s protocol extensions

• Design proposals for other languages are also on the table:

• for Kotlin as compile time dependency resolution

• for C# as Shapes and Extensions

• for F# as Traits

• Also a common feature of theorem provers such as Coq or Agda

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 3 / 28



Contextual Abstractions
Contextual Abstractions are a way to abstract over the context.

They are all variations of term inference; for a given type, the compiler
automatically infers a term that has that type.

Other languages have been influenced by Scala in this regard.

• Rust’s traits or Swift’s protocol extensions

• Design proposals for other languages are also on the table:

• for Kotlin as compile time dependency resolution

• for C# as Shapes and Extensions

• for F# as Traits

• Also a common feature of theorem provers such as Coq or Agda

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 3 / 28



Contextual Abstractions
Contextual Abstractions are a way to abstract over the context.

They are all variations of term inference; for a given type, the compiler
automatically infers a term that has that type.

Other languages have been influenced by Scala in this regard.

• Rust’s traits or Swift’s protocol extensions

• Design proposals for other languages are also on the table:

• for Kotlin as compile time dependency resolution

• for C# as Shapes and Extensions

• for F# as Traits

• Also a common feature of theorem provers such as Coq or Agda

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 3 / 28



Contextual Abstractions
Contextual Abstractions are a way to abstract over the context.

They are all variations of term inference; for a given type, the compiler
automatically infers a term that has that type.

Other languages have been influenced by Scala in this regard.

• Rust’s traits or Swift’s protocol extensions

• Design proposals for other languages are also on the table:

• for Kotlin as compile time dependency resolution

• for C# as Shapes and Extensions

• for F# as Traits

• Also a common feature of theorem provers such as Coq or Agda

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 3 / 28



Contents

1. Context Parameters

2. Implicit Conversions

3. Extension Methods

4. Given Imports

5. Type Classes

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 4 / 28



Contents

1. Context Parameters

2. Implicit Conversions

3. Extension Methods

4. Given Imports

5. Type Classes

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 5 / 28



Context Parameters
Assume that we want to define a method that differently renders the
content of a website depending on its configuration.

case class Html(body: List[String])
case class Config(bgColor: String, color: String)

def renderHtml(html: Html, config: Config): String =
renderBody(html.body, config)

def renderBody(body: List[String], config: Config): String =
body.map(renderElem(_, config)).mkString("\n")

def renderElem(elem: String, config: Config): String =
val Config(bgColor, color) = config
s"<p style='background: $bgColor; color: $color'>$elem</p>"

renderHtml(Html(List("A", "B", "C")), Config("red", "yellow"))
renderHtml(Html(List("D", "E", "F")), Config("blue", "green"))

However, it has a drawback: we need to pass the config parameter to
every method that needs it.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 6 / 28



Context Parameters
Assume that we want to define a method that differently renders the
content of a website depending on its configuration.

case class Html(body: List[String])
case class Config(bgColor: String, color: String)

def renderHtml(html: Html, config: Config): String =
renderBody(html.body, config)

def renderBody(body: List[String], config: Config): String =
body.map(renderElem(_, config)).mkString("\n")

def renderElem(elem: String, config: Config): String =
val Config(bgColor, color) = config
s"<p style='background: $bgColor; color: $color'>$elem</p>"

renderHtml(Html(List("A", "B", "C")), Config("red", "yellow"))
renderHtml(Html(List("D", "E", "F")), Config("blue", "green"))

However, it has a drawback: we need to pass the config parameter to
every method that needs it.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 6 / 28



Context Parameters
Context parameters defined by using keyword make us able to not
explicitly pass the config parameter to every method that needs it.

case class Html(body: List[String])
case class Config(bgColor: String, color: String)

def renderHtml(html: Html)(using config: Config): String =
renderBody(html.body) // no need to pass `config`

def renderBody(body: List[String])(using config: Config): String =
body.map(renderElem).mkString("\n") // no need to pass `config`

def renderElem(elem: String)(using config: Config): String =
val Config(bgColor, color) = config
s"<p style='background: $bgColor; color: $color'>$elem</p>"

renderHtml(Html(List("A", "B", "C")))(using Config("red", "yellow"))
renderHtml(Html(List("D", "E", "F")))(using Config("blue", "green"))

We can provide contextual arguments using using keyword.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 7 / 28



Context Parameters
If we do not need to refer to the config parameter in the method body,
we can even omit the parameter name:

case class Html(body: List[String])
case class Config(bgColor: String, color: String)

def renderHtml(html: Html)(using Config): String =
renderBody(html.body) // no need to pass `config`

def renderBody(body: List[String])(using Config): String =
body.map(renderElem).mkString("\n") // no need to pass `config`

def renderElem(elem: String)(using config: Config): String =
val Config(bgColor, color) = config
s"<p style='background: $bgColor; color: $color'>$elem</p>"

renderHtml(Html(List("A", "B", "C")))(using Config("red", "yellow"))
renderHtml(Html(List("D", "E", "F")))(using Config("blue", "green"))

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 8 / 28



Context Parameters – Given Instances
If we want to use a single instance for a particular type in the current
context, we can define a given instance for that type.

given Config = Config("red", "yellow")

Then, we can call renderHtml by implicitly passing the given instance:

// implicitly pass `Config("red", "yellow)` to a context parameter
renderHtml(Html(List("A", "B", "C")))

We can define multiple given instances for the same type with names:

given config1: Config = Config("red", "yellow")
given config2: Config = Config("blue", "green")

renderHtml(Html(List("A", "B", "C")))(using config1)
renderHtml(Html(List("D", "E", "F")))(using config2)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 9 / 28



Context Parameters – Given Instances
If we want to use a single instance for a particular type in the current
context, we can define a given instance for that type.

given Config = Config("red", "yellow")

Then, we can call renderHtml by implicitly passing the given instance:

// implicitly pass `Config("red", "yellow)` to a context parameter
renderHtml(Html(List("A", "B", "C")))

We can define multiple given instances for the same type with names:

given config1: Config = Config("red", "yellow")
given config2: Config = Config("blue", "green")

renderHtml(Html(List("A", "B", "C")))(using config1)
renderHtml(Html(List("D", "E", "F")))(using config2)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 9 / 28



Context Parameters – Given Instances
If we want to use a single instance for a particular type in the current
context, we can define a given instance for that type.

given Config = Config("red", "yellow")

Then, we can call renderHtml by implicitly passing the given instance:

// implicitly pass `Config("red", "yellow)` to a context parameter
renderHtml(Html(List("A", "B", "C")))

We can define multiple given instances for the same type with names:

given config1: Config = Config("red", "yellow")
given config2: Config = Config("blue", "green")

renderHtml(Html(List("A", "B", "C")))(using config1)
renderHtml(Html(List("D", "E", "F")))(using config2)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 9 / 28



Context Parameters – Exampels
Let’s define a Circle class as follows:

case class Circle(radius: Double)

Assume that we want to define a method to magnify a circle by a given
factor without modifying the Circle class.

def magnify(c: Circle)(using k: Int): Circle = Circle(c.radius * k)

Then, we can call it by explicitly passing the magnification factor:

magnify(Circle(3.0))(using 2) // Circle(6.0)

or by defining a given instance for the Int type:

given magnifier: Int = 2
magnify(Circle(3.0)) // Circle(6.0)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 10 / 28



Context Parameters – Exampels
Let’s define a Circle class as follows:

case class Circle(radius: Double)

Assume that we want to define a method to magnify a circle by a given
factor without modifying the Circle class.

def magnify(c: Circle)(using k: Int): Circle = Circle(c.radius * k)

Then, we can call it by explicitly passing the magnification factor:

magnify(Circle(3.0))(using 2) // Circle(6.0)

or by defining a given instance for the Int type:

given magnifier: Int = 2
magnify(Circle(3.0)) // Circle(6.0)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 10 / 28



Context Parameters – Exampels
Let’s define a Circle class as follows:

case class Circle(radius: Double)

Assume that we want to define a method to magnify a circle by a given
factor without modifying the Circle class.

def magnify(c: Circle)(using k: Int): Circle = Circle(c.radius * k)

Then, we can call it by explicitly passing the magnification factor:

magnify(Circle(3.0))(using 2) // Circle(6.0)

or by defining a given instance for the Int type:

given magnifier: Int = 2
magnify(Circle(3.0)) // Circle(6.0)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 10 / 28



Context Parameters – Exampels
Let’s define a Circle class as follows:

case class Circle(radius: Double)

Assume that we want to define a method to magnify a circle by a given
factor without modifying the Circle class.

def magnify(c: Circle)(using k: Int): Circle = Circle(c.radius * k)

Then, we can call it by explicitly passing the magnification factor:

magnify(Circle(3.0))(using 2) // Circle(6.0)

or by defining a given instance for the Int type:

given magnifier: Int = 2
magnify(Circle(3.0)) // Circle(6.0)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 10 / 28



Contents

1. Context Parameters

2. Implicit Conversions

3. Extension Methods

4. Given Imports

5. Type Classes

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 11 / 28



Implicit Conversions
In general, programming languages have a fixed set of implicit
conversions that are built into the language.

However, Scala allows users to define their own implicit conversions by
defining given instances for the Conversion type.

For example, we can define an implicit conversion from String to Int as
its length with a given instance for the Conversion[String, Int] type:

given Conversion[String, Int] = (s: String) => s.length

Then, Scala compiler automatically converts String to Int when needed:

val len: Int = "hello" // implicitly converted to 5

We can give a name to the given instance:

given stringToInt: Conversion[String, Int] = (s: String) => s.length

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 12 / 28



Implicit Conversions
In general, programming languages have a fixed set of implicit
conversions that are built into the language.

However, Scala allows users to define their own implicit conversions by
defining given instances for the Conversion type.

For example, we can define an implicit conversion from String to Int as
its length with a given instance for the Conversion[String, Int] type:

given Conversion[String, Int] = (s: String) => s.length

Then, Scala compiler automatically converts String to Int when needed:

val len: Int = "hello" // implicitly converted to 5

We can give a name to the given instance:

given stringToInt: Conversion[String, Int] = (s: String) => s.length

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 12 / 28



Implicit Conversions
In general, programming languages have a fixed set of implicit
conversions that are built into the language.

However, Scala allows users to define their own implicit conversions by
defining given instances for the Conversion type.

For example, we can define an implicit conversion from String to Int as
its length with a given instance for the Conversion[String, Int] type:

given Conversion[String, Int] = (s: String) => s.length

Then, Scala compiler automatically converts String to Int when needed:

val len: Int = "hello" // implicitly converted to 5

We can give a name to the given instance:

given stringToInt: Conversion[String, Int] = (s: String) => s.length

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 12 / 28



Implicit Conversions
In general, programming languages have a fixed set of implicit
conversions that are built into the language.

However, Scala allows users to define their own implicit conversions by
defining given instances for the Conversion type.

For example, we can define an implicit conversion from String to Int as
its length with a given instance for the Conversion[String, Int] type:

given Conversion[String, Int] = (s: String) => s.length

Then, Scala compiler automatically converts String to Int when needed:

val len: Int = "hello" // implicitly converted to 5

We can give a name to the given instance:

given stringToInt: Conversion[String, Int] = (s: String) => s.length

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 12 / 28



Implicit Conversions
In general, programming languages have a fixed set of implicit
conversions that are built into the language.

However, Scala allows users to define their own implicit conversions by
defining given instances for the Conversion type.

For example, we can define an implicit conversion from String to Int as
its length with a given instance for the Conversion[String, Int] type:

given Conversion[String, Int] = (s: String) => s.length

Then, Scala compiler automatically converts String to Int when needed:

val len: Int = "hello" // implicitly converted to 5

We can give a name to the given instance:

given stringToInt: Conversion[String, Int] = (s: String) => s.length

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 12 / 28



Implicit Conversions – Example
Assume that we have Circle and Square classes as follows:

case class Circle(radius: Double)
case class Square(side: Double)

Let’s define a implicit conversion from Circle to Square that converts
a circle to a square with the same area:

given circleToSquare: Conversion[Circle, Square] =
(c: Circle) => Square(math.sqrt(math.Pi * c.radius * c.radius))

Scala compiler automatically converts Circle to Square when needed:

val square: Square = Circle(3.0)
// implicitly converted to Square(5.317361552716548)
// because sqrt(9 * Pi) = sqrt(28.274333882308138) = 5.317361552716548

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 13 / 28



Implicit Conversions – Example
Assume that we have Circle and Square classes as follows:

case class Circle(radius: Double)
case class Square(side: Double)

Let’s define a implicit conversion from Circle to Square that converts
a circle to a square with the same area:

given circleToSquare: Conversion[Circle, Square] =
(c: Circle) => Square(math.sqrt(math.Pi * c.radius * c.radius))

Scala compiler automatically converts Circle to Square when needed:

val square: Square = Circle(3.0)
// implicitly converted to Square(5.317361552716548)
// because sqrt(9 * Pi) = sqrt(28.274333882308138) = 5.317361552716548

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 13 / 28



Implicit Conversions – Example
Assume that we have Circle and Square classes as follows:

case class Circle(radius: Double)
case class Square(side: Double)

Let’s define a implicit conversion from Circle to Square that converts
a circle to a square with the same area:

given circleToSquare: Conversion[Circle, Square] =
(c: Circle) => Square(math.sqrt(math.Pi * c.radius * c.radius))

Scala compiler automatically converts Circle to Square when needed:

val square: Square = Circle(3.0)
// implicitly converted to Square(5.317361552716548)
// because sqrt(9 * Pi) = sqrt(28.274333882308138) = 5.317361552716548

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 13 / 28



Implicit Conversions – Example
However, Scala does not support chained implicit conversions.

case class Circle(radius: Double)
case class Square(side: Double)
type Area = Double

given c2a: Conversion[Circle, Area] = c => math.Pi * c.radius * c.radius
given a2s: Conversion[Area, Square] = a => Square(math.sqrt(a))

val area: Area = Circle(3.0)
val square1: Square = area
val square2: Square = Circle(3.0) // error: no implicit conversion found

We need to define an implicit conversion from Circle to Square:

given Conversion[Circle, Square] = c => a2s(c2a(c))

val square2: Square = Circle(3.0) // Square(5.317361552716548)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 14 / 28



Implicit Conversions – Example
However, Scala does not support chained implicit conversions.

case class Circle(radius: Double)
case class Square(side: Double)
type Area = Double

given c2a: Conversion[Circle, Area] = c => math.Pi * c.radius * c.radius
given a2s: Conversion[Area, Square] = a => Square(math.sqrt(a))

val area: Area = Circle(3.0)
val square1: Square = area
val square2: Square = Circle(3.0) // error: no implicit conversion found

We need to define an implicit conversion from Circle to Square:

given Conversion[Circle, Square] = c => a2s(c2a(c))

val square2: Square = Circle(3.0) // Square(5.317361552716548)

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 14 / 28



Contents

1. Context Parameters

2. Implicit Conversions

3. Extension Methods

4. Given Imports

5. Type Classes

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 15 / 28



Extension Methods
Imagine someone else defined a Circle class as follows:

case class Circle(radius: Double)

Now, assume that we want to define a method to calculate the area of a
circle without modifying the Circle class.

Then, we need to define a top-level method area as follows:

def getArea(c: Circle): Double = math.Pi * c.radius * c.radius

Now, we can call this method as follows:

val circle: Circle = Circle(3.0)
getArea(circle) // 9 * Pi = 28.274333882308138

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 16 / 28



Extension Methods
Imagine someone else defined a Circle class as follows:

case class Circle(radius: Double)

Now, assume that we want to define a method to calculate the area of a
circle without modifying the Circle class.

Then, we need to define a top-level method area as follows:

def getArea(c: Circle): Double = math.Pi * c.radius * c.radius

Now, we can call this method as follows:

val circle: Circle = Circle(3.0)
getArea(circle) // 9 * Pi = 28.274333882308138

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 16 / 28



Extension Methods
Imagine someone else defined a Circle class as follows:

case class Circle(radius: Double)

Now, assume that we want to define a method to calculate the area of a
circle without modifying the Circle class.

Then, we need to define a top-level method area as follows:

def getArea(c: Circle): Double = math.Pi * c.radius * c.radius

Now, we can call this method as follows:

val circle: Circle = Circle(3.0)
getArea(circle) // 9 * Pi = 28.274333882308138

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 16 / 28



Extension Methods
Imagine someone else defined a Circle class as follows:

case class Circle(radius: Double)

Now, assume that we want to define a method to calculate the area of a
circle without modifying the Circle class.

Then, we need to define a top-level method area as follows:

def getArea(c: Circle): Double = math.Pi * c.radius * c.radius

Now, we can call this method as follows:

val circle: Circle = Circle(3.0)
getArea(circle) // 9 * Pi = 28.274333882308138

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 16 / 28



Extension Methods
On the other hand, extension methods let us add new methods to a
type without modifying the type definition.

extension (c: Circle)
def area: Double = math.Pi * c.radius * c.radius

In this code,
• Circle is the type that the extension method is added to.
• The c: Circle syntax lets you refer to the variable c in your

extension method.
We can call the method area as if it were a method of the Circle class:

val circle: Circle = Circle(3.0)
circle.area // 9 * Pi = 28.274333882308138

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 17 / 28



Extension Methods
On the other hand, extension methods let us add new methods to a
type without modifying the type definition.

extension (c: Circle)
def area: Double = math.Pi * c.radius * c.radius

In this code,
• Circle is the type that the extension method is added to.
• The c: Circle syntax lets you refer to the variable c in your

extension method.

We can call the method area as if it were a method of the Circle class:

val circle: Circle = Circle(3.0)
circle.area // 9 * Pi = 28.274333882308138

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 17 / 28



Extension Methods
On the other hand, extension methods let us add new methods to a
type without modifying the type definition.

extension (c: Circle)
def area: Double = math.Pi * c.radius * c.radius

In this code,
• Circle is the type that the extension method is added to.
• The c: Circle syntax lets you refer to the variable c in your

extension method.
We can call the method area as if it were a method of the Circle class:

val circle: Circle = Circle(3.0)
circle.area // 9 * Pi = 28.274333882308138

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 17 / 28



Extension Methods
We can even define extension methods for Scala built-in types, including
primitive types, such as Int:

extension (n: Int)
def isEven: Boolean = n % 2 == 0

42.isEven // true
3.isEven // false

We can define multiple extension methods for the same type:

extension (n: Int)
def square: Int = d * d
def cube: Int = d * d * d

3.square // 3 * 3 = 9
3.cube // 3 * 3 * 3 = 27
2.square.cube // 2 * 2 = 4 and 4 * 4 * 4 = 64

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 18 / 28



Extension Methods
We can even define extension methods for Scala built-in types, including
primitive types, such as Int:

extension (n: Int)
def isEven: Boolean = n % 2 == 0

42.isEven // true
3.isEven // false

We can define multiple extension methods for the same type:

extension (n: Int)
def square: Int = d * d
def cube: Int = d * d * d

3.square // 3 * 3 = 9
3.cube // 3 * 3 * 3 = 27
2.square.cube // 2 * 2 = 4 and 4 * 4 * 4 = 64

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 18 / 28



Contents

1. Context Parameters

2. Implicit Conversions

3. Extension Methods

4. Given Imports

5. Type Classes

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 19 / 28



Given Imports
We defined given instances in the object A:

case class Circle(radius: Double)
case class Square(side: Double)
object A:

given magnifier: Int = 2
given circleToSquare: Conversion[Circle, Square] =

(c: Circle) => Square(math.sqrt(math.Pi * c.radius * c.radius))

How to import these given instances in another object B?

object B:
import A.{magnifier, circleToSquare}

def magnify(c: Circle)(using k: Int): Circle = Circle(c.radius * k)

// passing `magnifier` implicitly to `k` for `magnify`
// implicitly converting `Circle` to `Square`
val square: Square = magnify(Circle(3.0))

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 20 / 28



Given Imports
We defined given instances in the object A:

case class Circle(radius: Double)
case class Square(side: Double)
object A:

given magnifier: Int = 2
given circleToSquare: Conversion[Circle, Square] =

(c: Circle) => Square(math.sqrt(math.Pi * c.radius * c.radius))

How to import these given instances in another object B?

object B:
import A.{magnifier, circleToSquare}

def magnify(c: Circle)(using k: Int): Circle = Circle(c.radius * k)

// passing `magnifier` implicitly to `k` for `magnify`
// implicitly converting `Circle` to `Square`
val square: Square = magnify(Circle(3.0))

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 20 / 28



Given Imports
Note that import A.* imports all non-given members in A:

object B:
import A.* // import all non-given members in `A`

// not importing `magnifier` and `circleToSquare`
...

To import all given members in A, we need to use import A.given:

object B:
import A.given // import all given members in `A`,

// including `magnifier` and `circleToSquare`
...

Thus, to import all member no matter if they are given or not, we can
use import A.{*, given}.

object B:
import A.{*, given} // import all members in `A`
...

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 21 / 28



Given Imports
Note that import A.* imports all non-given members in A:

object B:
import A.* // import all non-given members in `A`

// not importing `magnifier` and `circleToSquare`
...

To import all given members in A, we need to use import A.given:

object B:
import A.given // import all given members in `A`,

// including `magnifier` and `circleToSquare`
...

Thus, to import all member no matter if they are given or not, we can
use import A.{*, given}.

object B:
import A.{*, given} // import all members in `A`
...

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 21 / 28



Given Imports
Note that import A.* imports all non-given members in A:

object B:
import A.* // import all non-given members in `A`

// not importing `magnifier` and `circleToSquare`
...

To import all given members in A, we need to use import A.given:

object B:
import A.given // import all given members in `A`,

// including `magnifier` and `circleToSquare`
...

Thus, to import all member no matter if they are given or not, we can
use import A.{*, given}.

object B:
import A.{*, given} // import all members in `A`
...

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 21 / 28



Contents

1. Context Parameters

2. Implicit Conversions

3. Extension Methods

4. Given Imports

5. Type Classes

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 22 / 28



Type Classes
A type class is a well-known type system in functional programming that
allows us to define a set of operations that can be applied to a type.

In Scala, we can define a type class using a trait.

For example, let’s define a type class Show[A] that provides an abstract
extension method show to convert an instance of type A to a String:

trait Show[A]:
extension (a: A) def show: String

Consider the following Person class:

case class Person(name: String, age: Int)

Then, we can define a given instance for the Show[Person] type class:

given Show[Person] with
extension (p: Person)

def show: String = s"${p.firstName} (age: ${p.lastName})"

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 23 / 28



Type Classes
A type class is a well-known type system in functional programming that
allows us to define a set of operations that can be applied to a type.

In Scala, we can define a type class using a trait.

For example, let’s define a type class Show[A] that provides an abstract
extension method show to convert an instance of type A to a String:

trait Show[A]:
extension (a: A) def show: String

Consider the following Person class:

case class Person(name: String, age: Int)

Then, we can define a given instance for the Show[Person] type class:

given Show[Person] with
extension (p: Person)

def show: String = s"${p.firstName} (age: ${p.lastName})"

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 23 / 28



Type Classes
A type class is a well-known type system in functional programming that
allows us to define a set of operations that can be applied to a type.

In Scala, we can define a type class using a trait.

For example, let’s define a type class Show[A] that provides an abstract
extension method show to convert an instance of type A to a String:

trait Show[A]:
extension (a: A) def show: String

Consider the following Person class:

case class Person(name: String, age: Int)

Then, we can define a given instance for the Show[Person] type class:

given Show[Person] with
extension (p: Person)

def show: String = s"${p.firstName} (age: ${p.lastName})"

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 23 / 28



Type Classes
A type class is a well-known type system in functional programming that
allows us to define a set of operations that can be applied to a type.

In Scala, we can define a type class using a trait.

For example, let’s define a type class Show[A] that provides an abstract
extension method show to convert an instance of type A to a String:

trait Show[A]:
extension (a: A) def show: String

Consider the following Person class:

case class Person(name: String, age: Int)

Then, we can define a given instance for the Show[Person] type class:

given Show[Person] with
extension (p: Person)

def show: String = s"${p.firstName} (age: ${p.lastName})"

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 23 / 28



Type Classes
A type class is a well-known type system in functional programming that
allows us to define a set of operations that can be applied to a type.

In Scala, we can define a type class using a trait.

For example, let’s define a type class Show[A] that provides an abstract
extension method show to convert an instance of type A to a String:

trait Show[A]:
extension (a: A) def show: String

Consider the following Person class:

case class Person(name: String, age: Int)

Then, we can define a given instance for the Show[Person] type class:

given Show[Person] with
extension (p: Person)

def show: String = s"${p.firstName} (age: ${p.lastName})"

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 23 / 28



Type Classes – Context Bounds
We can use the Show[A] type class as follows:

val person: Person = Person("Ryu", 52)
person.show // "Ryu (age: 52)"

Let’s define a method to convert a list of persons to a list of strings using
the Show[A] type class:

def showAll[A](as: List[A])(using Show[A]): List[String] =
as.map(_.show)

val persons = List(Person("Ryu", 52), Person("Park", 32))
showAll(persons) // List("Ryu (age: 52)", "Park (age: 32)")

We can simplify the method signature using a context bound:

def showAll[A: Show](as: List[A]): List[String] = as.map(_.show)

A context bound [A: Show] is a shorthand syntax for expressing the
pattern of a context parameter applied to a type parameter.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 24 / 28



Type Classes – Context Bounds
We can use the Show[A] type class as follows:

val person: Person = Person("Ryu", 52)
person.show // "Ryu (age: 52)"

Let’s define a method to convert a list of persons to a list of strings using
the Show[A] type class:

def showAll[A](as: List[A])(using Show[A]): List[String] =
as.map(_.show)

val persons = List(Person("Ryu", 52), Person("Park", 32))
showAll(persons) // List("Ryu (age: 52)", "Park (age: 32)")

We can simplify the method signature using a context bound:

def showAll[A: Show](as: List[A]): List[String] = as.map(_.show)

A context bound [A: Show] is a shorthand syntax for expressing the
pattern of a context parameter applied to a type parameter.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 24 / 28



Type Classes – Context Bounds
We can use the Show[A] type class as follows:

val person: Person = Person("Ryu", 52)
person.show // "Ryu (age: 52)"

Let’s define a method to convert a list of persons to a list of strings using
the Show[A] type class:

def showAll[A](as: List[A])(using Show[A]): List[String] =
as.map(_.show)

val persons = List(Person("Ryu", 52), Person("Park", 32))
showAll(persons) // List("Ryu (age: 52)", "Park (age: 32)")

We can simplify the method signature using a context bound:

def showAll[A: Show](as: List[A]): List[String] = as.map(_.show)

A context bound [A: Show] is a shorthand syntax for expressing the
pattern of a context parameter applied to a type parameter.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 24 / 28



Type Classes – Examples
Scala supports Ordering[A] as a built-in type class for comparing
instances of type A.

For example, we need to define a given instance for the Ordering[A] to
use specific methods (e.g., max, min, sorted, etc) for List[A]:

val nums: List[Int] = List(3, 1, 5, 6, 2, 4)
nums.max // 3
nums.min // 1
nums.sorted // List(1, 2, 3, 4, 5, 6)

We can above methods because there is a given instance for the
Ordering[Int] is already defined in the Scala standard library.

However, if we want to use above methods for a custom type, we need to
define a given instance for the Ordering[A] type class.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 25 / 28



Type Classes – Examples
Scala supports Ordering[A] as a built-in type class for comparing
instances of type A.

For example, we need to define a given instance for the Ordering[A] to
use specific methods (e.g., max, min, sorted, etc) for List[A]:

val nums: List[Int] = List(3, 1, 5, 6, 2, 4)
nums.max // 3
nums.min // 1
nums.sorted // List(1, 2, 3, 4, 5, 6)

We can above methods because there is a given instance for the
Ordering[Int] is already defined in the Scala standard library.

However, if we want to use above methods for a custom type, we need to
define a given instance for the Ordering[A] type class.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 25 / 28



Type Classes – Examples
Scala supports Ordering[A] as a built-in type class for comparing
instances of type A.

For example, we need to define a given instance for the Ordering[A] to
use specific methods (e.g., max, min, sorted, etc) for List[A]:

val nums: List[Int] = List(3, 1, 5, 6, 2, 4)
nums.max // 3
nums.min // 1
nums.sorted // List(1, 2, 3, 4, 5, 6)

We can above methods because there is a given instance for the
Ordering[Int] is already defined in the Scala standard library.

However, if we want to use above methods for a custom type, we need to
define a given instance for the Ordering[A] type class.

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 25 / 28



Type Classes – Examples

case class Person(name: String, age: Int)

Let’s define a type class Ordering[A] for the Person type:

given Ordering[Person] = Ordering.by((p: Person) => (p.age, p.name))

It means that we want to compare Person instances by their ages but if
the ages are the same, we want to compare them by their names.

val ps = List(Person("A",3),Person("B",1),Person("C",7),Person("D",3))
ps.max // Person(C, 7)
ps.min // Person(B, 1)
ps.sorted // List(Person(B,1),Person(A,3),Person(D,3),Person(C,7))

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 26 / 28



Type Classes – Examples

case class Person(name: String, age: Int)

Let’s define a type class Ordering[A] for the Person type:

given Ordering[Person] = Ordering.by((p: Person) => (p.age, p.name))

It means that we want to compare Person instances by their ages but if
the ages are the same, we want to compare them by their names.

val ps = List(Person("A",3),Person("B",1),Person("C",7),Person("D",3))
ps.max // Person(C, 7)
ps.min // Person(B, 1)
ps.sorted // List(Person(B,1),Person(A,3),Person(D,3),Person(C,7))

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 26 / 28



Summary

1. Context Parameters

2. Implicit Conversions

3. Extension Methods

4. Given Imports

5. Type Classes

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 27 / 28



Next Lecture
• Metaprogramming

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 10 – Contextual Abstractions May 20, 2024 28 / 28

https://plrg.korea.ac.kr

	Context Parameters
	Implicit Conversions
	Extension Methods
	Given Imports
	Type Classes

